Hi, Upgraded Spark from 2.11.12 to Spark 3.0.1
Hive version 3.1.1 and Hadoop version 3.1.1 The following used to work with Spark 2.11.12 scala> sqltext = s""" | INSERT INTO TABLE ${fullyQualifiedTableName} | SELECT | ID | , CLUSTERED | , SCATTERED | , RANDOMISED | , RANDOM_STRING | , SMALL_VC | , PADDING | FROM tmp | """ INSERT INTO TABLE test.randomData SELECT ID , CLUSTERED , SCATTERED , RANDOMISED , RANDOM_STRING , SMALL_VC , PADDING FROM tmp scala> spark.sql(sqltext) But with Spark 3.0.1 it fails throwing the following error java.lang.ArrayIndexOutOfBoundsException: 0 at org.apache.spark.sql.types.StructType.apply(StructType.scala:414) at org.apache.spark.sql.catalyst.optimizer.ObjectSerializerPruning$$anonfun$apply$4.$anonfun$applyOrElse$3(objects.scala:224) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) at scala.collection.immutable.List.foreach(List.scala:392) at scala.collection.TraversableLike.map(TraversableLike.scala:238) at scala.collection.TraversableLike.map$(TraversableLike.scala:231) at scala.collection.immutable.List.map(List.scala:298) at org.apache.spark.sql.catalyst.optimizer.ObjectSerializerPruning$$anonfun$apply$4.applyOrElse(objects.scala:223) at org.apache.spark.sql.catalyst.optimizer.ObjectSerializerPruning$$anonfun$apply$4.applyOrElse(objects.scala:211) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDown$1(TreeNode.scala:309) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:72) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:309) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org $apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDown(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDown(AnalysisHelper.scala:149) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDown$(AnalysisHelper.scala:147) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDown(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDown(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDown$3(TreeNode.scala:314) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$mapChildren$1(TreeNode.scala:399) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:237) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:397) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:350) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:314) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org $apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDown(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDown(AnalysisHelper.scala:149) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDown$(AnalysisHelper.scala:147) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDown(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDown(LogicalPlan.scala:29) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:298) at org.apache.spark.sql.catalyst.optimizer.ObjectSerializerPruning$.apply(objects.scala:211) at org.apache.spark.sql.catalyst.optimizer.ObjectSerializerPruning$.apply(objects.scala:121) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:149) at scala.collection.IndexedSeqOptimized.foldLeft(IndexedSeqOptimized.scala:60) at scala.collection.IndexedSeqOptimized.foldLeft$(IndexedSeqOptimized.scala:68) at scala.collection.mutable.WrappedArray.foldLeft(WrappedArray.scala:38) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:146) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:138) at scala.collection.immutable.List.foreach(List.scala:392) at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:138) at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:116) at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88) at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:116) at org.apache.spark.sql.execution.QueryExecution.$anonfun$optimizedPlan$1(QueryExecution.scala:82) at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111) at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:133) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764) at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:133) at org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:82) at org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:79) at org.apache.spark.sql.execution.QueryExecution.$anonfun$writePlans$4(QueryExecution.scala:197) at org.apache.spark.sql.catalyst.plans.QueryPlan$.append(QueryPlan.scala:381) at org.apache.spark.sql.execution.QueryExecution.org $apache$spark$sql$execution$QueryExecution$$writePlans(QueryExecution.scala:197) at org.apache.spark.sql.execution.QueryExecution.toString(QueryExecution.scala:207) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:95) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3616) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:229) at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:100) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97) at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:607) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:602) ... 47 elided Sounds like some incompatibility issue here? Thanks, Mich LinkedIn * https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw <https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw>* *Disclaimer:* Use it at your own risk. Any and all responsibility for any loss, damage or destruction of data or any other property which may arise from relying on this email's technical content is explicitly disclaimed. The author will in no case be liable for any monetary damages arising from such loss, damage or destruction.