I am trying to read a compressed CSV file in pyspark. but I am unable to read
in pyspark kernel mode in sagemaker.

The same file I can read using pandas when the kernel is conda-python3 (in
sagemaker)

What I tried :

file1 =  's3://testdata/output1.csv.gz'
file1_df = spark.read.csv(file1, sep='\t')

Error message :

An error was encountered:
An error occurred while calling 104.csv.
: java.io.IOException:
com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.model.AmazonS3Exception:
Access Denied (Service: Amazon S3; Status Code: 403; Error Code:
AccessDenied; Request ID: 7FF77313; S3 Extended Request ID: 

Kindly let me know if I am missing anything



______________________
Trainer for  Spark Training in Hyderabad
<https://intellipaat.com/apache-spark-scala-training-hyderabad/>  .



--
Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/

---------------------------------------------------------------------
To unsubscribe e-mail: user-unsubscr...@spark.apache.org

Reply via email to