I am trying to read a compressed CSV file in pyspark. but I am unable to read in pyspark kernel mode in sagemaker.
The same file I can read using pandas when the kernel is conda-python3 (in sagemaker) What I tried : file1 = 's3://testdata/output1.csv.gz' file1_df = spark.read.csv(file1, sep='\t') Error message : An error was encountered: An error occurred while calling 104.csv. : java.io.IOException: com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.model.AmazonS3Exception: Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 7FF77313; S3 Extended Request ID: Kindly let me know if I am missing anything ______________________ Trainer for Spark Training in Hyderabad <https://intellipaat.com/apache-spark-scala-training-hyderabad/> . -- Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/ --------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org