The below line works
val c = newDF.withColumn("target_mobile_no", col("target_mobile_no").cast(StringType)). filter("length(target_mobile_no) != 10 OR substring(target_mobile_no,1,1) != '7'") But not the following when the values are passed as parameters val rejectedDF = newDF.withColumn("target_mobile_no", col("target_mobile_no").cast(StringType)). filter(*"*length(target_mobile_no) != broadcastStagingConfig.mobileNoLength OR substring(target_mobile_no,1,1) != broadcastStagingConfig.ukMobileNoStart*"*) I think it cannot interpret them Dr Mich Talebzadeh LinkedIn * https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw <https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw>* http://talebzadehmich.wordpress.com *Disclaimer:* Use it at your own risk. Any and all responsibility for any loss, damage or destruction of data or any other property which may arise from relying on this email's technical content is explicitly disclaimed. The author will in no case be liable for any monetary damages arising from such loss, damage or destruction. On Wed, 29 Apr 2020 at 13:25, Mich Talebzadeh <mich.talebza...@gmail.com> wrote: > OK how do you pass variables for 10 and '7' > > val rejectedDF = newDF.withColumn("target_mobile_no", > col("target_mobile_no").cast(StringType)). > > filter("length(target_mobile_no) != 10 OR > substring(target_mobile_no,1,1) != '7'") > > in above in Scala. Neither $ value below or lit() are working! > > val rejectedDF = newDF.withColumn("target_mobile_no", > col("target_mobile_no").cast(StringType)). > > filter("length(target_mobile_no) != > ${broadcastStagingConfig.mobileNoLength} OR substring(target_mobile_no,1,1) > != ${broadcastStagingConfig.ukMobileNoStart}") > > > Thanks > > > > > > Dr Mich Talebzadeh > > > > LinkedIn * > https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw > <https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw>* > > > > http://talebzadehmich.wordpress.com > > > *Disclaimer:* Use it at your own risk. Any and all responsibility for any > loss, damage or destruction of data or any other property which may arise > from relying on this email's technical content is explicitly disclaimed. > The author will in no case be liable for any monetary damages arising from > such loss, damage or destruction. > > > > > On Wed, 29 Apr 2020 at 10:15, Mich Talebzadeh <mich.talebza...@gmail.com> > wrote: > >> Hi Zhang, >> >> Yes the SQL way worked fine >> >> val rejectedDF = newDF.withColumn("target_mobile_no", >> col("target_mobile_no").cast(StringType)). >> >> filter("length(target_mobile_no) != 10 OR >> substring(target_mobile_no,1,1) != '7'") >> >> Many thanks, >> >> Dr Mich Talebzadeh >> >> >> >> LinkedIn * >> https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw >> <https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw>* >> >> >> >> http://talebzadehmich.wordpress.com >> >> >> *Disclaimer:* Use it at your own risk. Any and all responsibility for >> any loss, damage or destruction of data or any other property which may >> arise from relying on this email's technical content is explicitly >> disclaimed. The author will in no case be liable for any monetary damages >> arising from such loss, damage or destruction. >> >> >> >> >> On Wed, 29 Apr 2020 at 09:51, ZHANG Wei <wezh...@outlook.com> wrote: >> >>> AFAICT, maybe Spark SQL built-in functions[1] can help as below: >>> >>> scala> df.show() >>> +----+-------+ >>> | age| name| >>> +----+-------+ >>> |null|Michael| >>> | 30| Andy| >>> | 19| Justin| >>> +----+-------+ >>> >>> >>> scala> df.filter("length(name) == 4 or substring(name, 1, 1) == >>> 'J'").show() >>> +---+------+ >>> |age| name| >>> +---+------+ >>> | 30| Andy| >>> | 19|Justin| >>> +---+------+ >>> >>> >>> -- >>> Cheers, >>> -z >>> [1] https://spark.apache.org/docs/latest/api/sql/index.html >>> >>> On Wed, 29 Apr 2020 08:45:26 +0100 >>> Mich Talebzadeh <mich.talebza...@gmail.com> wrote: >>> >>> > Hi, >>> > >>> > >>> > >>> > Trying to filter a dataframe with multiple conditions using OR "||" as >>> below >>> > >>> > >>> > >>> > val rejectedDF = newDF.withColumn("target_mobile_no", >>> > col("target_mobile_no").cast(StringType)). >>> > >>> > filter(length(col("target_mobile_no")) !== 10 || >>> > substring(col("target_mobile_no"),1,1) !== "7") >>> > >>> > >>> > >>> > This throws this error >>> > >>> > >>> > >>> > res12: org.apache.spark.sql.DataFrame = [] >>> > >>> > <console>:49: error: value || is not a member of Int >>> > >>> > filter(length(col("target_mobile_no")) !== >>> 10 || >>> > substring(col("target_mobile_no"),1,1) !== "7") >>> > >>> > >>> > >>> > Try another way >>> > >>> > >>> > >>> > val rejectedDF = newDF.withColumn("target_mobile_no", >>> > col("target_mobile_no").cast(StringType)). >>> > >>> > filter(length(col("target_mobile_no")) !=== 10 || >>> > substring(col("target_mobile_no"),1,1) !=== "7") >>> > >>> > rejectedDF.createOrReplaceTempView("tmp") >>> > >>> > >>> > >>> > Tried few options but I am still getting this error >>> > >>> > >>> > >>> > <console>:49: error: value !=== is not a member of >>> > org.apache.spark.sql.Column >>> > >>> > filter(length(col("target_mobile_no")) !=== >>> 10 || >>> > substring(col("target_mobile_no"),1,1) !=== "7") >>> > >>> > ^ >>> > >>> > <console>:49: error: value || is not a member of Int >>> > >>> > filter(length(col("target_mobile_no")) !=== >>> 10 || >>> > substring(col("target_mobile_no"),1,1) !=== "7") >>> > >>> > >>> > >>> > I can create a dataframe for each filter but that does not look >>> efficient >>> > to me? >>> > >>> > >>> > >>> > Thanks >>> > >>> > >>> > >>> > Dr Mich Talebzadeh >>> > >>> > >>> > >>> > LinkedIn * >>> https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw >>> > < >>> https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw >>> >* >>> > >>> > >>> > >>> > http://talebzadehmich.wordpress.com >>> > >>> > >>> > *Disclaimer:* Use it at your own risk. Any and all responsibility for >>> any >>> > loss, damage or destruction of data or any other property which may >>> arise >>> > from relying on this email's technical content is explicitly >>> disclaimed. >>> > The author will in no case be liable for any monetary damages arising >>> from >>> > such loss, damage or destruction. >>> >>