Thanks Stephen, saw that, but this is already released version of 
spark-sklearn-0.3.0, tests should be working.

So just checking if I am doing anything wrong, version of other libraries
etc..

Thanks
Sudhir

> On Apr 8, 2019, at 1:52 PM, Stephen Boesch <java...@gmail.com> wrote:
> 
> There are several suggestions on this SOF   
> https://stackoverflow.com/questions/38984775/spark-errorexpected-zero-arguments-for-construction-of-classdict-for-numpy-cor
> 
> 1
> 
> You need to convert the final value to a python list. You implement the 
> function as follows:
> 
> def uniq_array(col_array):
>     x = np.unique(col_array)
>     return list(x)
> This is because Spark doesn't understand the numpy array format. In order to 
> feed a python object that Spark DataFrames understand as an ArrayType, you 
> need to convert the output to a python list before returning it.
> 
> 
> 
> 
> 
> 
> 
> The source of the problem is that object returned from the UDF doesn't 
> conform to the declared type. np.unique not only returns numpy.ndarray but 
> also converts numerics to the corresponding NumPy types which are not 
> compatible with DataFrame API. You can try something like this:
> 
> udf(lambda x: list(set(x)), ArrayType(IntegerType()))
> or this (to keep order)
> 
> udf(lambda xs: list(OrderedDict((x, None) for x in xs)), 
>     ArrayType(IntegerType()))
> instead.
> 
> If you really want np.unique you have to convert the output:
> 
> udf(lambda x: np.unique(x).tolist(), ArrayType(IntegerType()))
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
>> Am Mo., 8. Apr. 2019 um 11:43 Uhr schrieb Sudhir Babu Pothineni 
>> <sbpothin...@gmail.com>:
>> 
>> 
>> 
>>> Trying to run tests in spark-sklearn, anybody check the below exception
>>> 
>>> pip freeze:
>>> 
>>> nose==1.3.7
>>> numpy==1.16.1
>>> pandas==0.19.2
>>> python-dateutil==2.7.5
>>> pytz==2018.9
>>> scikit-learn==0.19.2
>>> scipy==1.2.0
>>> six==1.12.0
>>> spark-sklearn==0.3.0
>>> 
>>> Spark version:
>>> spark-2.2.3-bin-hadoop2.6/bin/pyspark
>>> 
>>> 
>>> running into following exception:
>>> 
>>> ======================================================================
>>> ERROR: test_scipy_sparse (spark_sklearn.converter_test.CSRVectorUDTTests)
>>> ----------------------------------------------------------------------
>>> Traceback (most recent call last):
>>>   File 
>>> "/home/spothineni/Downloads/spark-sklearn-release-0.3.0/python/spark_sklearn/converter_test.py",
>>>  line 83, in test_scipy_sparse
>>>     self.assertEqual(df.count(), 1)
>>>   File 
>>> "/home/spothineni/Downloads/spark-2.4.1-bin-hadoop2.6/python/pyspark/sql/dataframe.py",
>>>  line 522, in count
>>>     return int(self._jdf.count())
>>>   File 
>>> "/home/spothineni/Downloads/spark-2.4.1-bin-hadoop2.6/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py",
>>>  line 1257, in __call__
>>>     answer, self.gateway_client, self.target_id, self.name)
>>>   File 
>>> "/home/spothineni/Downloads/spark-2.4.1-bin-hadoop2.6/python/pyspark/sql/utils.py",
>>>  line 63, in deco
>>>     return f(*a, **kw)
>>>   File 
>>> "/home/spothineni/Downloads/spark-2.4.1-bin-hadoop2.6/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py",
>>>  line 328, in get_return_value
>>>     format(target_id, ".", name), value)
>>> Py4JJavaError: An error occurred while calling o652.count.
>>> : org.apache.spark.SparkException: Job aborted due to stage failure: Task 
>>> 11 in stage 0.0 failed 1 times, most recent failure: Lost task 11.0 in 
>>> stage 0.0 (TID 11, localhost, executor driver): 
>>> net.razorvine.pickle.PickleException: expected zero arguments for 
>>> construction of ClassDict (for numpy.dtype)
>>>     at 
>>> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
>>>     at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
>>>     at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
>>>     at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
>>>     at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
>>>     at 
>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:188)
>>>     at 
>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:187)
>>>     at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:435)
>>>     at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:441)
>>>     at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
>>>     at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
>>>     at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
>>>     at 
>>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.agg_doAggregateWithoutKey_0$(Unknown
>>>  Source)
>>>     at 
>>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown
>>>  Source)
>>>     at 
>>> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>>>     at 
>>> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
>>>     at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
>>>     at 
>>> org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
>>>     at 
>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
>>>     at 
>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
>>>     at org.apache.spark.scheduler.Task.run(Task.scala:121)
>>>     at 
>>> org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:403)
>>>     at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
>>>     at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:409)
>>>     at 
>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>     at 
>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>>     at java.lang.Thread.run(Thread.java:745)
>>> 
>>> Driver stacktrace:
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1889)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
>>>     at 
>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
>>>     at scala.Option.foreach(Option.scala:257)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
>>>     at 
>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
>>>     at 
>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
>>>     at 
>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
>>>     at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
>>>     at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
>>>     at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
>>>     at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
>>>     at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
>>>     at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945)
>>>     at 
>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
>>>     at 
>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
>>>     at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
>>>     at org.apache.spark.rdd.RDD.collect(RDD.scala:944)
>>>     at 
>>> org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:299)
>>>     at 
>>> org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2830)
>>>     at 
>>> org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2829)
>>>     at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3364)
>>>     at 
>>> org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
>>>     at 
>>> org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
>>>     at 
>>> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
>>>     at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3363)
>>>     at org.apache.spark.sql.Dataset.count(Dataset.scala:2829)
>>>     at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>     at 
>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>>>     at 
>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>     at java.lang.reflect.Method.invoke(Method.java:498)
>>>     at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
>>>     at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
>>>     at py4j.Gateway.invoke(Gateway.java:282)
>>>     at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
>>>     at py4j.commands.CallCommand.execute(CallCommand.java:79)
>>>     at py4j.GatewayConnection.run(GatewayConnection.java:238)
>>>     at java.lang.Thread.run(Thread.java:745)
>>> Caused by: net.razorvine.pickle.PickleException: expected zero arguments 
>>> for construction of ClassDict (for numpy.dtype)
>>>     at 
>>> net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
>>>     at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
>>>     at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175)
>>>     at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
>>>     at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
>>>     at 
>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:188)
>>>     at 
>>> org.apache.spark.api.python.SerDeUtil$$anonfun$pythonToJava$1$$anonfun$apply$1.apply(SerDeUtil.scala:187)
>>>     at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:435)
>>>     at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:441)
>>>     at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
>>>     at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
>>>     at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
>>>     at 
>>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.agg_doAggregateWithoutKey_0$(Unknown
>>>  Source)
>>>     at 
>>> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown
>>>  Source)
>>>     at 
>>> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>>>     at 
>>> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
>>>     at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
>>>     at 
>>> org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
>>>     at 
>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
>>>     at 
>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
>>>     at org.apache.spark.scheduler.Task.run(Task.scala:121)
>>>     at 
>>> org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:403)
>>>     at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
>>>     at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:409)
>>>     at 
>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>     at 
>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>>     ... 1 more
>>> 
>>> 

Reply via email to