Hello, I am fairly new to Spark, recently I was debugging some Spark application failures, one issue I found is that the executor failed to write with the following stack trace: 2018-09-23 05:05:38 ERROR Executor:91 - Exception in task 1037.0 in stage 14.0 (TID 33041) java.io.FileNotFoundException: /mnt/yarn/usercache/svc_di_payments/appcache/application_1533840530908_0650/blockmgr-774f7b90-cd87-4589-b4cf-6baea80ac58c/36/shuffle_10_1037_0.data.3b42eb09-8a67-4b8d-990e-0e03417b1fe3 (No such file or directory) at java.io.FileOutputStream.open0(Native Method) at java.io.FileOutputStream.open(FileOutputStream.java:270) at java.io.FileOutputStream.<init>(FileOutputStream.java:213) at org.apache.spark.storage.DiskBlockObjectWriter.initialize(DiskBlockObjectWriter.scala:103) at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:116) at org.apache.spark.storage.DiskBlockObjectWriter.write(DiskBlockObjectWriter.scala:237) at org.apache.spark.util.collection.WritablePartitionedPairCollection$$anon$1.writeNext(WritablePartitionedPairCollection.scala:56) at org.apache.spark.util.collection.ExternalSorter.writePartitionedFile(ExternalSorter.scala:699) at org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:72) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53) at org.apache.spark.scheduler.Task.run(Task.scala:109) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748)
What looks strange in this case, is that the container is running Executor:54 (lots of logs for that executor), however, for the failures it says Executor:91, is that normal? Thanks, Guang -- Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/ --------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org