you can try dropduplicate function

https://github.com/spirom/LearningSpark/blob/master/src/main/scala/dataframe/DropDuplicates.scala

On 31 May 2018 at 16:34, <julio.ces...@free.fr> wrote:

> Hi there !
>
> I have a potentially large dataset ( regarding number of rows and cols )
>
> And I want to find the fastest way to drop some useless cols for me, i.e.
> cols containing only an unique value !
>
> I want to know what do you think that I could do to do this as fast as
> possible using spark.
>
>
> I already have a solution using distinct().count() or approxCountDistinct()
> But, they may not be the best choice as this requires to go through all
> the data, even if the 2 first tested values for a col are already different
> ( and in this case I know that I can keep the col )
>
>
> Thx for your ideas !
>
> Julien
>
> ---------------------------------------------------------------------
> To unsubscribe e-mail: user-unsubscr...@spark.apache.org
>
>

Reply via email to