Hi, What would be the appropriate settings to run Spark with Kafka 10? My job works fine with Spark with Kafka 8 and with Kafka 8 cluster. But its very slow with Kafka 10 by using Kafka Direct' experimental APIs for Kafka 10 . I see the following error sometimes . Please see the kafka parameters and the consumer strategy for creating the stream below. Any suggestions on how to run this with better performance would be of great help.
java.lang.AssertionError: assertion failed: Failed to get records for test stream1 72 324027964 after polling for 120000 val kafkaParams = Map[String, Object]( "bootstrap.servers" -> kafkaBrokers, "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "auto.offset.reset" -> "latest", "heartbeat.interval.ms" -> Integer.valueOf(20000), "session.timeout.ms" -> Integer.valueOf(60000), "request.timeout.ms" -> Integer.valueOf(90000), "enable.auto.commit" -> (false: java.lang.Boolean), "spark.streaming.kafka.consumer.cache.enabled" -> "false", "group.id" -> "test1" ) val hubbleStream = KafkaUtils.createDirectStream[String, String]( ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams) ) -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/Slower-performance-while-running-Spark-Kafka-Direct-Streaming-with-Kafka-10-cluster-tp29108.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org