Hi Pat,

I am using dynamic scheduling with executor memory of 8 gb . Will check to do 
static scheduling by giving number of executor and cores.

Thanks,
Asmath

Sent from my iPhone

> On Aug 18, 2017, at 10:39 AM, Patrick Alwell <palw...@hortonworks.com> wrote:
> 
> +1 what is the executor memory? You may need to adjust executor memory and 
> cores. For the sake of simplicity; each executor can handle 5 concurrent 
> tasks and should have 5 cores. So if your cluster has 100 cores, you’d have 
> 20 executors. And if your cluster memory is 500gb, each executor would have  
> 25gb of memory.
>  
> What’s more, you can use tools like the Spark UI or Ganglia to determine 
> which step is failing and why. What is the overall cluster size? How many 
> executors do you have? Is it an appropriate count for this cluster’s cores? 
> I’m assuming you are using YARN?
>  
> -Pat
>  
> From: KhajaAsmath Mohammed <mdkhajaasm...@gmail.com>
> Date: Friday, August 18, 2017 at 5:30 AM
> To: Pralabh Kumar <pralabhku...@gmail.com>
> Cc: "user @spark" <user@spark.apache.org>
> Subject: Re: GC overhead exceeded
>  
> It is just a sql from hive table with transformation if adding 10 more 
> columns calculated for currency. Input size for this query is 2 months which 
> has around 450gb data.
>  
> I added persist but it didn't help. Also the executor memory is 8g . Any 
> suggestions please ?
> 
> Sent from my iPhone
> 
> On Aug 17, 2017, at 11:43 PM, Pralabh Kumar <pralabhku...@gmail.com> wrote:
> 
> what's is your exector memory , please share the code also
>  
> On Fri, Aug 18, 2017 at 10:06 AM, KhajaAsmath Mohammed 
> <mdkhajaasm...@gmail.com> wrote:
>  
> HI,
>  
> I am getting below error when running spark sql jobs. This error is thrown 
> after running 80% of tasks. any solution?
>  
> spark.storage.memoryFraction=0.4
> spark.sql.shuffle.partitions=2000
> spark.default.parallelism=100
> #spark.eventLog.enabled=false
> #spark.scheduler.revive.interval=1s
> spark.driver.memory=8g
>  
>  
> java.lang.OutOfMemoryError: GC overhead limit exceeded
>         at java.util.ArrayList.subList(ArrayList.java:955)
>         at java.lang.String.split(String.java:2311)
>         at 
> sun.net.util.IPAddressUtil.textToNumericFormatV4(IPAddressUtil.java:47)
>         at java.net.InetAddress.getAllByName(InetAddress.java:1129)
>         at java.net.InetAddress.getAllByName(InetAddress.java:1098)
>         at java.net.InetAddress.getByName(InetAddress.java:1048)
>         at org.apache.hadoop.net.NetUtils.normalizeHostName(NetUtils.java:562)
>         at 
> org.apache.hadoop.net.NetUtils.normalizeHostNames(NetUtils.java:579)
>         at 
> org.apache.hadoop.net.CachedDNSToSwitchMapping.resolve(CachedDNSToSwitchMapping.java:109)
>         at 
> org.apache.hadoop.yarn.util.RackResolver.coreResolve(RackResolver.java:101)
>         at 
> org.apache.hadoop.yarn.util.RackResolver.resolve(RackResolver.java:81)
>         at 
> org.apache.spark.scheduler.cluster.YarnScheduler.getRackForHost(YarnScheduler.scala:37)
>         at 
> org.apache.spark.scheduler.TaskSetManager.dequeueTask(TaskSetManager.scala:380)
>         at 
> org.apache.spark.scheduler.TaskSetManager.resourceOffer(TaskSetManager.scala:433)
>         at 
> org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$org$apache$spark$scheduler$TaskSchedulerImpl$$resourceOfferSingleTaskSet$1.apply$mcVI$sp(TaskSchedulerImpl.scala:276)
>         at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:160)
>         at 
> org.apache.spark.scheduler.TaskSchedulerImpl.org$apache$spark$scheduler$TaskSchedulerImpl$$resourceOfferSingleTaskSet(TaskSchedulerImpl.scala:271)
>         at 
> org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$4$$anonfun$apply$9.apply(TaskSchedulerImpl.scala:357)
>         at 
> org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$4$$anonfun$apply$9.apply(TaskSchedulerImpl.scala:355)
>         at 
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>         at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
>         at 
> org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$4.apply(TaskSchedulerImpl.scala:355)
>         at 
> org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$4.apply(TaskSchedulerImpl.scala:352)
>         at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>         at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>         at 
> org.apache.spark.scheduler.TaskSchedulerImpl.resourceOffers(TaskSchedulerImpl.scala:352)
>         at 
> org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend$DriverEndpoint.org$apache$spark$scheduler$cluster$CoarseGrainedSchedulerBackend$DriverEndpoint$$makeOffers(CoarseGrainedSchedulerBackend.scala:222)
>  
>  

Reply via email to