Hi Pat, I am using dynamic scheduling with executor memory of 8 gb . Will check to do static scheduling by giving number of executor and cores.
Thanks, Asmath Sent from my iPhone > On Aug 18, 2017, at 10:39 AM, Patrick Alwell <palw...@hortonworks.com> wrote: > > +1 what is the executor memory? You may need to adjust executor memory and > cores. For the sake of simplicity; each executor can handle 5 concurrent > tasks and should have 5 cores. So if your cluster has 100 cores, you’d have > 20 executors. And if your cluster memory is 500gb, each executor would have > 25gb of memory. > > What’s more, you can use tools like the Spark UI or Ganglia to determine > which step is failing and why. What is the overall cluster size? How many > executors do you have? Is it an appropriate count for this cluster’s cores? > I’m assuming you are using YARN? > > -Pat > > From: KhajaAsmath Mohammed <mdkhajaasm...@gmail.com> > Date: Friday, August 18, 2017 at 5:30 AM > To: Pralabh Kumar <pralabhku...@gmail.com> > Cc: "user @spark" <user@spark.apache.org> > Subject: Re: GC overhead exceeded > > It is just a sql from hive table with transformation if adding 10 more > columns calculated for currency. Input size for this query is 2 months which > has around 450gb data. > > I added persist but it didn't help. Also the executor memory is 8g . Any > suggestions please ? > > Sent from my iPhone > > On Aug 17, 2017, at 11:43 PM, Pralabh Kumar <pralabhku...@gmail.com> wrote: > > what's is your exector memory , please share the code also > > On Fri, Aug 18, 2017 at 10:06 AM, KhajaAsmath Mohammed > <mdkhajaasm...@gmail.com> wrote: > > HI, > > I am getting below error when running spark sql jobs. This error is thrown > after running 80% of tasks. any solution? > > spark.storage.memoryFraction=0.4 > spark.sql.shuffle.partitions=2000 > spark.default.parallelism=100 > #spark.eventLog.enabled=false > #spark.scheduler.revive.interval=1s > spark.driver.memory=8g > > > java.lang.OutOfMemoryError: GC overhead limit exceeded > at java.util.ArrayList.subList(ArrayList.java:955) > at java.lang.String.split(String.java:2311) > at > sun.net.util.IPAddressUtil.textToNumericFormatV4(IPAddressUtil.java:47) > at java.net.InetAddress.getAllByName(InetAddress.java:1129) > at java.net.InetAddress.getAllByName(InetAddress.java:1098) > at java.net.InetAddress.getByName(InetAddress.java:1048) > at org.apache.hadoop.net.NetUtils.normalizeHostName(NetUtils.java:562) > at > org.apache.hadoop.net.NetUtils.normalizeHostNames(NetUtils.java:579) > at > org.apache.hadoop.net.CachedDNSToSwitchMapping.resolve(CachedDNSToSwitchMapping.java:109) > at > org.apache.hadoop.yarn.util.RackResolver.coreResolve(RackResolver.java:101) > at > org.apache.hadoop.yarn.util.RackResolver.resolve(RackResolver.java:81) > at > org.apache.spark.scheduler.cluster.YarnScheduler.getRackForHost(YarnScheduler.scala:37) > at > org.apache.spark.scheduler.TaskSetManager.dequeueTask(TaskSetManager.scala:380) > at > org.apache.spark.scheduler.TaskSetManager.resourceOffer(TaskSetManager.scala:433) > at > org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$org$apache$spark$scheduler$TaskSchedulerImpl$$resourceOfferSingleTaskSet$1.apply$mcVI$sp(TaskSchedulerImpl.scala:276) > at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:160) > at > org.apache.spark.scheduler.TaskSchedulerImpl.org$apache$spark$scheduler$TaskSchedulerImpl$$resourceOfferSingleTaskSet(TaskSchedulerImpl.scala:271) > at > org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$4$$anonfun$apply$9.apply(TaskSchedulerImpl.scala:357) > at > org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$4$$anonfun$apply$9.apply(TaskSchedulerImpl.scala:355) > at > scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) > at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) > at > org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$4.apply(TaskSchedulerImpl.scala:355) > at > org.apache.spark.scheduler.TaskSchedulerImpl$$anonfun$resourceOffers$4.apply(TaskSchedulerImpl.scala:352) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at > org.apache.spark.scheduler.TaskSchedulerImpl.resourceOffers(TaskSchedulerImpl.scala:352) > at > org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend$DriverEndpoint.org$apache$spark$scheduler$cluster$CoarseGrainedSchedulerBackend$DriverEndpoint$$makeOffers(CoarseGrainedSchedulerBackend.scala:222) > >