Hi,

Any reason why we might be getting this error? The code seems to work fine
in the non-distributed mode but the same code when run from a Spark job is
not able to get to Elastic.

Spark version: 2.0.1 built for Hadoop 2.4, Scala 2.11
Elastic version: 2.3.1

I've verified the Elastic hosts and the cluster name.

The spot in the code where this happens is:

ClusterHealthResponse clusterHealthResponse = client.admin().cluster()
.prepareHealth()
.setWaitForGreenStatus()
.setTimeout(TimeValue.timeValueSeconds(10))
.get();

Stack trace:

Driver stacktrace:
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441)
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1890)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1903)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1916)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1930)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:902)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:900)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:900)
at
org.apache.spark.api.java.JavaRDDLike$class.foreachPartition(JavaRDDLike.scala:218)
at
org.apache.spark.api.java.AbstractJavaRDDLike.foreachPartition(JavaRDDLike.scala:45)
at com.myco.MyDriver$3.call(com.myco.MyDriver.java:214)
at com.myco.MyDriver$3.call(KafkaSparkStreamingDriver.java:201)
at
org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:272)
at
org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:272)
at
org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:627)
at
org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:627)
at
org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
at
org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
at
org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
at
org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415)
at
org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
at
org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
at
org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
at
org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:247)
at
org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:247)
at
org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:247)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at
org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:246)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: NoNodeAvailableException[None of the configured nodes are
available: [{#transport#-1}{XX.XXX.XXX.XX}{XX.XXX.XXX.XX:9300}]]
at
org.elasticsearch.client.transport.TransportClientNodesService.ensureNodesAreAvailable(TransportClientNodesService.java:290)
at
org.elasticsearch.client.transport.TransportClientNodesService.execute(TransportClientNodesService.java:207)
at
org.elasticsearch.client.transport.support.TransportProxyClient.execute(TransportProxyClient.java:55)
at
org.elasticsearch.client.transport.TransportClient.doExecute(TransportClient.java:288)
at
org.elasticsearch.client.support.AbstractClient.execute(AbstractClient.java:359)
at
org.elasticsearch.client.support.AbstractClient$ClusterAdmin.execute(AbstractClient.java:853)
at
org.elasticsearch.action.ActionRequestBuilder.execute(ActionRequestBuilder.java:86)
at
org.elasticsearch.action.ActionRequestBuilder.execute(ActionRequestBuilder.java:56)
at
org.elasticsearch.action.ActionRequestBuilder.get(ActionRequestBuilder.java:64)
at com.myco.MyDriver.work()



--
View this message in context: 
http://apache-spark-user-list.1001560.n3.nabble.com/NoNodeAvailableException-None-of-the-configured-nodes-are-available-error-when-trying-to-push-data-tb-tp28370.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe e-mail: user-unsubscr...@spark.apache.org

Reply via email to