Hi, Any reason why we might be getting this error? The code seems to work fine in the non-distributed mode but the same code when run from a Spark job is not able to get to Elastic.
Spark version: 2.0.1 built for Hadoop 2.4, Scala 2.11 Elastic version: 2.3.1 I've verified the Elastic hosts and the cluster name. The spot in the code where this happens is: ClusterHealthResponse clusterHealthResponse = client.admin().cluster() .prepareHealth() .setWaitForGreenStatus() .setTimeout(TimeValue.timeValueSeconds(10)) .get(); Stack trace: Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1890) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1903) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1916) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1930) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:902) at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:900) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:358) at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:900) at org.apache.spark.api.java.JavaRDDLike$class.foreachPartition(JavaRDDLike.scala:218) at org.apache.spark.api.java.AbstractJavaRDDLike.foreachPartition(JavaRDDLike.scala:45) at com.myco.MyDriver$3.call(com.myco.MyDriver.java:214) at com.myco.MyDriver$3.call(KafkaSparkStreamingDriver.java:201) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:272) at org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$foreachRDD$1.apply(JavaDStreamLike.scala:272) at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:627) at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:627) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50) at scala.util.Try$.apply(Try.scala:192) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:247) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:247) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:247) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:246) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Caused by: NoNodeAvailableException[None of the configured nodes are available: [{#transport#-1}{XX.XXX.XXX.XX}{XX.XXX.XXX.XX:9300}]] at org.elasticsearch.client.transport.TransportClientNodesService.ensureNodesAreAvailable(TransportClientNodesService.java:290) at org.elasticsearch.client.transport.TransportClientNodesService.execute(TransportClientNodesService.java:207) at org.elasticsearch.client.transport.support.TransportProxyClient.execute(TransportProxyClient.java:55) at org.elasticsearch.client.transport.TransportClient.doExecute(TransportClient.java:288) at org.elasticsearch.client.support.AbstractClient.execute(AbstractClient.java:359) at org.elasticsearch.client.support.AbstractClient$ClusterAdmin.execute(AbstractClient.java:853) at org.elasticsearch.action.ActionRequestBuilder.execute(ActionRequestBuilder.java:86) at org.elasticsearch.action.ActionRequestBuilder.execute(ActionRequestBuilder.java:56) at org.elasticsearch.action.ActionRequestBuilder.get(ActionRequestBuilder.java:64) at com.myco.MyDriver.work() -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/NoNodeAvailableException-None-of-the-configured-nodes-are-available-error-when-trying-to-push-data-tb-tp28370.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org