Hi Team, Actually I figured out something ..
While Hive Java UDF executed on hive it is giving output with 10 decimal precision but in spark same udf is giving results rounded off to 6 decimal precision... How do I stop that? Its the same java udf jar files used in both hive and spark.. [image: Inline image 1] On Thu, Feb 2, 2017 at 3:33 PM, Alex <siri8...@gmail.com> wrote: > Hi As shown below same query when ran back to back showing inconsistent > results.. > > testtable1 is Avro Serde table... > > [image: Inline image 1] > > > > hc.sql("select * from testtable1 order by col1 limit 1").collect; > res14: Array[org.apache.spark.sql.Row] = Array([1570,3364,201607,Y,APJ, > PHILIPPINES,8518944,null,null,null,null,-15.992583,0.0,-15. > 992583,null,null,MONTH_ITEM_GROUP]) > > scala> hc.sql("select * from testtable1 order by col1 limit 1").collect; > res15: Array[org.apache.spark.sql.Row] = Array([1570,485888,20163,N, > AMERICAS,BRAZIL,null,null,null,null,null,6019.299999999999,17198.0,6019. > 299999999999,null,null,QUARTER_GROUP]) > > scala> hc.sql("select * from testtable1 order by col1 limit 1").collect; > res16: Array[org.apache.spark.sql.Row] = Array([1570,3930,201607,Y,APJ,INDIA > SUB-CONTINENT,8741220,null,null,null,null,-208.485216,0. > 0,-208.485216,null,null,MONTH_ITEM_GROUP]) > >