Are you sure that “age” is a numeric field? Even numeric, you could pass the “44” between quotes:
INSERT into your_table ("user","age","state") VALUES ('user3’,’44','CT’) Are you sure there are no more fields that are specified as NOT NULL, and that you did not provide a value (besides user, age and state)? > On 26 Jan 2017, at 04:42, Xuan Dzung Doan <doanxuand...@yahoo.com.INVALID> > wrote: > > Hi, > > Spark version 2.1.0 > MySQL community server version 5.7.17 > MySQL Connector Java 5.1.40 > > I need to save a dataframe to a MySQL table. In spark shell, the following > statement succeeds: > > scala> df.write.mode(SaveMode.Append).format("jdbc").option("url", > "jdbc:mysql://127.0.0.1:3306/mydb").option("dbtable", > "person").option("user", "username").option("password", "password").save() > > I write an app that basically does the same thing, issuing the same statement > saving the same dataframe to the same MySQL table. I run it using > spark-submit, but it fails, reporting some error in the SQL syntax. Here's > the detailed stack trace: > > 17/01/25 16:06:02 INFO DAGScheduler: Job 2 failed: save at > DataIngestionJob.scala:119, took 0.159574 s > Exception in thread "main" org.apache.spark.SparkException: Job aborted due > to stage failure: Task 0 in stage 2.0 failed 1 times, most recent failure: > Lost task 0.0 in stage 2.0 (TID 3, localhost, executor driver): > java.sql.BatchUpdateException: You have an error in your SQL syntax; check > the manual that corresponds to your MySQL server version for the right syntax > to use near '"user","age","state") VALUES ('user3',44,'CT')' at line 1 > at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) > at > sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) > at > sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) > at java.lang.reflect.Constructor.newInstance(Constructor.java:423) > at com.mysql.jdbc.Util.handleNewInstance(Util.java:425) > at com.mysql.jdbc.Util.getInstance(Util.java:408) > at > com.mysql.jdbc.SQLError.createBatchUpdateException(SQLError.java:1162) > at > com.mysql.jdbc.PreparedStatement.executeBatchSerially(PreparedStatement.java:1773) > at > com.mysql.jdbc.PreparedStatement.executeBatchInternal(PreparedStatement.java:1257) > at com.mysql.jdbc.StatementImpl.executeBatch(StatementImpl.java:958) > at > org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:597) > at > org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:670) > at > org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$saveTable$1.apply(JdbcUtils.scala:670) > at > org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:925) > at > org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1$$anonfun$apply$29.apply(RDD.scala:925) > at > org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944) > at > org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944) > at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) > at org.apache.spark.scheduler.Task.run(Task.scala:99) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Caused by: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: You > have an error in your SQL syntax; check the manual that corresponds to your > MySQL server version for the right syntax to use near '"user","age","state") > VALUES ('user3',44,'CT')' at line 1 > at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) > at > sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) > at > sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) > at java.lang.reflect.Constructor.newInstance(Constructor.java:423) > at com.mysql.jdbc.Util.handleNewInstance(Util.java:425) > at com.mysql.jdbc.Util.getInstance(Util.java:408) > at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:943) > at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3970) > at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3906) > at com.mysql.jdbc.MysqlIO.sendCommand(MysqlIO.java:2524) > at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2677) > at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2549) > at > com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:1861) > at > com.mysql.jdbc.PreparedStatement.executeUpdateInternal(PreparedStatement.java:2073) > at > com.mysql.jdbc.PreparedStatement.executeBatchSerially(PreparedStatement.java:1751) > ... 15 more > > Driver stacktrace: > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802) > at scala.Option.foreach(Option.scala:257) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at > org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1958) > at > org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:925) > at > org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:923) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:362) > at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:923) > at > org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply$mcV$sp(Dataset.scala:2305) > at > org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply(Dataset.scala:2305) > at > org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply(Dataset.scala:2305) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) > at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2765) > at org.apache.spark.sql.Dataset.foreachPartition(Dataset.scala:2304) > at > org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.saveTable(JdbcUtils.scala:670) > at > org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:77) > at > org.apache.spark.sql.execution.datasources.DataSource.write(DataSource.scala:426) > at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:215) > at > io.optics.analytics.dataingestion.DataIngestion.run(DataIngestionJob.scala:119) > at > io.optics.analytics.dataingestion.DataIngestionJob$.main(DataIngestionJob.scala:28) > at > io.optics.analytics.dataingestion.DataIngestionJob.main(DataIngestionJob.scala) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at > org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738) > at > org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187) > at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212) > at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126) > at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) > > Any idea why it's happening? A possible bug in spark? > > Thanks, > Dzung. > > --------------------------------------------------------------------- > To unsubscribe e-mail: user-unsubscr...@spark.apache.org > --------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org