Here is how you would read from Google Cloud Storage(note you need to create
a service account key) ->

os.environ['PYSPARK_SUBMIT_ARGS'] = """--jars
/home/neil/Downloads/gcs-connector-latest-hadoop2.jar pyspark-shell"""

from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession, SQLContext

conf = SparkConf()\
    .setMaster("local[8]")\
    .setAppName("GS")   

sc = SparkContext(conf=conf)

sc._jsc.hadoopConfiguration().set("fs.gs.impl",
"com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem")
sc._jsc.hadoopConfiguration().set("fs.AbstractFileSystem.gs.impl",
"com.google.cloud.hadoop.fs.gcs.GoogleHadoopFS")
sc._jsc.hadoopConfiguration().set("fs.gs.project.id", "PUT UR GOOGLE PROJECT
ID HERE")

sc._jsc.hadoopConfiguration().set("fs.gs.auth.service.account.email",
"testa...@sparkgcs.iam.gserviceaccount.com")
sc._jsc.hadoopConfiguration().set("fs.gs.auth.service.account.enable",
"true")
sc._jsc.hadoopConfiguration().set("fs.gs.auth.service.account.keyfile",
"sparkgcs-96bd21691c29.p12")

spark = SparkSession.builder\
    .config(conf=sc.getConf())\
    .getOrCreate()

dfTermRaw = spark.read.format("csv")\
    .option("header", "true")\
    .option("delimiter" ,"\t")\
    .option("inferSchema", "true")\
    .load("gs://bucket_test/sample.tsv")




--
View this message in context: 
http://apache-spark-user-list.1001560.n3.nabble.com/Spark-Read-from-Google-store-and-save-in-AWS-s3-tp28278p28286.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe e-mail: user-unsubscr...@spark.apache.org

Reply via email to