When you say 0.10.1 do you mean broker version only, or does your assembly contain classes from the 0.10.1 kafka consumer?
On Fri, Dec 9, 2016 at 10:19 AM, debasishg <ghosh.debas...@gmail.com> wrote: > Hello - > > I am facing some issues with the following snippet of code that reads from > Kafka and creates DStream. I am using KafkaUtils.createDirectStream(..) with > Kafka 0.10.1 and Spark 2.0.1. > > // get the data from kafka > val stream: DStream[ConsumerRecord[Array[Byte], (String, String)]] = > KafkaUtils.createDirectStream[Array[Byte], (String, String)]( > streamingContext, > PreferConsistent, > Subscribe[Array[Byte], (String, String)](topicToReadFrom, kafkaParams) > ) > > // label and vectorize the value > val projected: DStream[(String, Vector)] = stream.map { record => > val (label, value) = record.value > val vector = Vectors.dense(value.split(",").map(_.toDouble)) > (label, vector) > }.transform(projectToLowerDimension) > > In the above snippet if I have the call to transform in the last line, I get > the following exception .. > > Caused by: java.util.ConcurrentModificationException: KafkaConsumer is not > safe for multi-threaded access > at > org.apache.kafka.clients.consumer.KafkaConsumer.acquire(KafkaConsumer.java:1431) > at > org.apache.kafka.clients.consumer.KafkaConsumer.seek(KafkaConsumer.java:1132) > at > org.apache.spark.streaming.kafka010.CachedKafkaConsumer.seek(CachedKafkaConsumer.scala:95) > at > org.apache.spark.streaming.kafka010.CachedKafkaConsumer.get(CachedKafkaConsumer.scala:69) > at > org.apache.spark.streaming.kafka010.KafkaRDD$KafkaRDDIterator.next(KafkaRDD.scala:227) > at > org.apache.spark.streaming.kafka010.KafkaRDD$KafkaRDDIterator.next(KafkaRDD.scala:193) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:409) > at scala.collection.Iterator$$anon$10.next(Iterator.scala:393) > at scala.collection.Iterator$class.foreach(Iterator.scala:893) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) > at > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48) > at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310) > at scala.collection.AbstractIterator.to(Iterator.scala:1336) > at > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302) > at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336) > .... > > The transform method does a PCA and gives the top 2 principal components .. > > private def projectToLowerDimension: RDD[(String, Vector)] => RDD[(String, > Vector)] = { rdd => > if (rdd.isEmpty) rdd else { > // reduce to 2 dimensions > val pca = new PCA(2).fit(rdd.map(_._2)) > > // Project vectors to the linear space spanned by the top 2 principal > // components, keeping the label > rdd.map(p => (p._1, pca.transform(p._2))) > } > } > > However if I remove the transform call, I can process everything correctly. > > Any help will be most welcome .. > > regards. > - Debasish > > > > -- > View this message in context: > http://apache-spark-user-list.1001560.n3.nabble.com/problem-with-kafka-createDirectStream-tp28190.html > Sent from the Apache Spark User List mailing list archive at Nabble.com. > > --------------------------------------------------------------------- > To unsubscribe e-mail: user-unsubscr...@spark.apache.org > --------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org