There is an open Jira for this issue (
https://issues.apache.org/jira/browse/SPARK-14804). There have been a few
proposed fixes so far.

On Thu, Nov 3, 2016 at 2:20 PM, jamborta <jambo...@gmail.com> wrote:

> Hi there,
>
> I am trying to run the example LDA code
> (http://spark.apache.org/docs/latest/mllib-clustering.html#
> latent-dirichlet-allocation-lda)
> on Spark 2.0.0/EMR 5.0.0
>
> If run it with checkpoints enabled (sc.setCheckpointDir("s3n://s3-path/")
>
> ldaModel = LDA.train(corpus, k=3, maxIterations=200, checkpointInterval=10)
>
> I get the following error (sorry, quite long):
>
> Py4JJavaErrorTraceback (most recent call last)
> <ipython-input-10-64711b08964e> in <module>()
> ----> 1 ldaModel = LDA.train(corpus, k=3, maxIterations=200,
> checkpointInterval=10)
>
> /usr/lib/spark/python/pyspark/mllib/clustering.py in train(cls, rdd, k,
> maxIterations, docConcentration, topicConcentration, seed,
> checkpointInterval, optimizer)
>    1037         model = callMLlibFunc("trainLDAModel", rdd, k,
> maxIterations,
>    1038                               docConcentration, topicConcentration,
> seed,
> -> 1039                               checkpointInterval, optimizer)
>    1040         return LDAModel(model)
>    1041
>
> /usr/lib/spark/python/pyspark/mllib/common.py in callMLlibFunc(name,
> *args)
>     128     sc = SparkContext.getOrCreate()
>     129     api = getattr(sc._jvm.PythonMLLibAPI(), name)
> --> 130     return callJavaFunc(sc, api, *args)
>     131
>     132
>
> /usr/lib/spark/python/pyspark/mllib/common.py in callJavaFunc(sc, func,
> *args)
>     121     """ Call Java Function """
>     122     args = [_py2java(sc, a) for a in args]
> --> 123     return _java2py(sc, func(*args))
>     124
>     125
>
> /usr/lib/spark/python/lib/py4j-0.10.1-src.zip/py4j/java_gateway.py in
> __call__(self, *args)
>     931         answer = self.gateway_client.send_command(command)
>     932         return_value = get_return_value(
> --> 933             answer, self.gateway_client, self.target_id, self.name
> )
>     934
>     935         for temp_arg in temp_args:
>
> /usr/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
>      61     def deco(*a, **kw):
>      62         try:
> ---> 63             return f(*a, **kw)
>      64         except py4j.protocol.Py4JJavaError as e:
>      65             s = e.java_exception.toString()
>
> /usr/lib/spark/python/lib/py4j-0.10.1-src.zip/py4j/protocol.py in
> get_return_value(answer, gateway_client, target_id, name)
>     310                 raise Py4JJavaError(
>     311                     "An error occurred while calling {0}{1}{2}.\n".
> --> 312                     format(target_id, ".", name), value)
>     313             else:
>     314                 raise Py4JError(
>
> Py4JJavaError: An error occurred while calling o115.trainLDAModel.
> : org.apache.spark.SparkException: Job aborted due to stage failure: Task
> 1
> in stage 458.0 failed 4 times, most recent failure: Lost task 1.3 in stage
> 458.0 (TID 14827, ip-10-197-192-2.eu-west-1.compute.internal):
> java.lang.ClassCastException: scala.Tuple2 cannot be cast to
> org.apache.spark.graphx.Edge
>         at
> org.apache.spark.graphx.EdgeRDD$$anonfun$1$$anonfun$
> apply$1.apply(EdgeRDD.scala:107)
>         at scala.collection.Iterator$class.foreach(Iterator.scala:893)
>         at
> org.apache.spark.InterruptibleIterator.foreach(
> InterruptibleIterator.scala:28)
>         at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(
> EdgeRDD.scala:107)
>         at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(
> EdgeRDD.scala:105)
>         at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$
> anonfun$apply$25.apply(RDD.scala:801)
>         at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$
> anonfun$apply$25.apply(RDD.scala:801)
>         at org.apache.spark.rdd.MapPartitionsRDD.compute(
> MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>         at org.apache.spark.rdd.MapPartitionsRDD.compute(
> MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:332)
>         at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:330)
>         at
> org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(
> BlockManager.scala:919)
>         at
> org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(
> BlockManager.scala:910)
>         at org.apache.spark.storage.BlockManager.doPut(
> BlockManager.scala:866)
>         at
> org.apache.spark.storage.BlockManager.doPutIterator(
> BlockManager.scala:910)
>         at
> org.apache.spark.storage.BlockManager.getOrElseUpdate(
> BlockManager.scala:668)
>         at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:281)
>         at org.apache.spark.graphx.EdgeRDD.compute(EdgeRDD.scala:50)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>         at org.apache.spark.rdd.MapPartitionsRDD.compute(
> MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>         at org.apache.spark.rdd.MapPartitionsRDD.compute(
> MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>         at
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
>         at
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
>         at org.apache.spark.scheduler.Task.run(Task.scala:85)
>         at org.apache.spark.executor.Executor$TaskRunner.run(
> Executor.scala:274)
>         at
> java.util.concurrent.ThreadPoolExecutor.runWorker(
> ThreadPoolExecutor.java:1142)
>         at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(
> ThreadPoolExecutor.java:617)
>         at java.lang.Thread.run(Thread.java:745)
>
> Driver stacktrace:
>         at
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$
> scheduler$DAGScheduler$$failJobAndIndependentStages(
> DAGScheduler.scala:1450)
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(
> DAGScheduler.scala:1438)
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(
> DAGScheduler.scala:1437)
>         at
> scala.collection.mutable.ResizableArray$class.foreach(
> ResizableArray.scala:59)
>         at scala.collection.mutable.ArrayBuffer.foreach(
> ArrayBuffer.scala:48)
>         at
> org.apache.spark.scheduler.DAGScheduler.abortStage(
> DAGScheduler.scala:1437)
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$
> handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
>         at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$
> handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
>         at scala.Option.foreach(Option.scala:257)
>         at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(
> DAGScheduler.scala:811)
>         at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.
> doOnReceive(DAGScheduler.scala:1659)
>         at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.
> onReceive(DAGScheduler.scala:1618)
>         at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.
> onReceive(DAGScheduler.scala:1607)
>         at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>         at org.apache.spark.scheduler.DAGScheduler.runJob(
> DAGScheduler.scala:632)
>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:1871)
>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:1934)
>         at org.apache.spark.rdd.RDD$$anonfun$fold$1.apply(RDD.scala:1046)
>         at
> org.apache.spark.rdd.RDDOperationScope$.withScope(
> RDDOperationScope.scala:151)
>         at
> org.apache.spark.rdd.RDDOperationScope$.withScope(
> RDDOperationScope.scala:112)
>         at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
>         at org.apache.spark.rdd.RDD.fold(RDD.scala:1040)
>         at
> org.apache.spark.mllib.clustering.EMLDAOptimizer.computeGlobalTopicTotals(
> LDAOptimizer.scala:226)
>         at
> org.apache.spark.mllib.clustering.EMLDAOptimizer.
> next(LDAOptimizer.scala:213)
>         at
> org.apache.spark.mllib.clustering.EMLDAOptimizer.
> next(LDAOptimizer.scala:79)
>         at org.apache.spark.mllib.clustering.LDA.run(LDA.scala:299)
>         at
> org.apache.spark.mllib.api.python.PythonMLLibAPI.
> trainLDAModel(PythonMLLibAPI.scala:552)
>         at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>         at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:
> 62)
>         at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(
> DelegatingMethodAccessorImpl.java:43)
>         at java.lang.reflect.Method.invoke(Method.java:498)
>         at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
>         at py4j.reflection.ReflectionEngine.invoke(
> ReflectionEngine.java:357)
>         at py4j.Gateway.invoke(Gateway.java:280)
>         at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.
> java:128)
>         at py4j.commands.CallCommand.execute(CallCommand.java:79)
>         at py4j.GatewayConnection.run(GatewayConnection.java:211)
>         at java.lang.Thread.run(Thread.java:745)
> Caused by: java.lang.ClassCastException: scala.Tuple2 cannot be cast to
> org.apache.spark.graphx.Edge
>         at
> org.apache.spark.graphx.EdgeRDD$$anonfun$1$$anonfun$
> apply$1.apply(EdgeRDD.scala:107)
>         at scala.collection.Iterator$class.foreach(Iterator.scala:893)
>         at
> org.apache.spark.InterruptibleIterator.foreach(
> InterruptibleIterator.scala:28)
>         at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(
> EdgeRDD.scala:107)
>         at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(
> EdgeRDD.scala:105)
>         at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$
> anonfun$apply$25.apply(RDD.scala:801)
>         at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$
> anonfun$apply$25.apply(RDD.scala:801)
>         at org.apache.spark.rdd.MapPartitionsRDD.compute(
> MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>         at org.apache.spark.rdd.MapPartitionsRDD.compute(
> MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:332)
>         at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:330)
>         at
> org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(
> BlockManager.scala:919)
>         at
> org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(
> BlockManager.scala:910)
>         at org.apache.spark.storage.BlockManager.doPut(
> BlockManager.scala:866)
>         at
> org.apache.spark.storage.BlockManager.doPutIterator(
> BlockManager.scala:910)
>         at
> org.apache.spark.storage.BlockManager.getOrElseUpdate(
> BlockManager.scala:668)
>         at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:281)
>         at org.apache.spark.graphx.EdgeRDD.compute(EdgeRDD.scala:50)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>         at org.apache.spark.rdd.MapPartitionsRDD.compute(
> MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>         at org.apache.spark.rdd.MapPartitionsRDD.compute(
> MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>         at
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
>         at
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
>         at org.apache.spark.scheduler.Task.run(Task.scala:85)
>         at org.apache.spark.executor.Executor$TaskRunner.run(
> Executor.scala:274)
>         at
> java.util.concurrent.ThreadPoolExecutor.runWorker(
> ThreadPoolExecutor.java:1142)
>         at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(
> ThreadPoolExecutor.java:617)
>         ... 1 more
>
>
>
>
> --
> View this message in context: http://apache-spark-user-list.
> 1001560.n3.nabble.com/example-LDA-code-ClassCastException-tp28009.html
> Sent from the Apache Spark User List mailing list archive at Nabble.com.
>
> ---------------------------------------------------------------------
> To unsubscribe e-mail: user-unsubscr...@spark.apache.org
>
>


-- 
Asher Krim
Senior Software Engineer

Reply via email to