Thanks for the response. What do you mean by "semantically" the same? They're both Datasets of the same type, which is a case class, so I would expect compile-time integrity of the data. Is there a situation where this wouldn't be the case?
Interestingly enough, if I instead create an empty rdd with sparkContext.emptyRDD of the same case class type, it works! So something like: var data = spark.sparkContext.emptyRDD[SomeData] // loop data = data.union(someCode.thatReturnsADataset().rdd) // end loop data.toDS //so I can union it to the actual Dataset I have elsewhere On Thu, Oct 20, 2016 at 8:34 PM Agraj Mangal <agraj....@gmail.com> wrote: I believe this normally comes when Spark is unable to perform union due to "difference" in schema of the operands. Can you check if the schema of both the datasets are semantically same ? On Tue, Oct 18, 2016 at 9:06 AM, Efe Selcuk <efema...@gmail.com> wrote: Bump! On Thu, Oct 13, 2016 at 8:25 PM Efe Selcuk <efema...@gmail.com> wrote: I have a use case where I want to build a dataset based off of conditionally available data. I thought I'd do something like this: case class SomeData( ... ) // parameters are basic encodable types like strings and BigDecimals var data = spark.emptyDataset[SomeData] // loop, determining what data to ingest and process into datasets data = data.union(someCode.thatReturnsADataset) // end loop However I get a runtime exception: Exception in thread "main" org.apache.spark.sql.AnalysisException: unresolved operator 'Union; at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:40) at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:58) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:361) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:58) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:161) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:167) at org.apache.spark.sql.Dataset$.apply(Dataset.scala:59) at org.apache.spark.sql.Dataset.withTypedPlan(Dataset.scala:2594) at org.apache.spark.sql.Dataset.union(Dataset.scala:1459) Granted, I'm new at Spark so this might be an anti-pattern, so I'm open to suggestions. However it doesn't seem like I'm doing anything incorrect here, the types are correct. Searching for this error online returns results seemingly about working in dataframes and having mismatching schemas or a different order of fields, and it seems like bugfixes have gone into place for those cases. Thanks in advance. Efe -- Thanks & Regards, Agraj Mangal