Hi. How exacly MLlib implementation of word2vec converts word vectors into one feature vector per row?

          TEXT
[Hi, I, heard, ab..]
[I, wish, Java, c..]
[Logistic, regres.]

            | word2vec

            V

WORD                       VECTOR
heard            [0.14950960874557...|
are                [-0.1639076173305...|
neat              [0.13949351012706...|
classes          [0.03703496977686...|
I                    [-0.0189154129475...|
regression    [0.15298652648925...|
Logistic         [-0.1270201653242...|
Spark            [-0.0535793155431...|
could            [0.12216471135616...|
use               [0.08246973901987...|
Hi                  [0.16548289358615...|
models         [-0.0568316541612...|
case             [0.11626788973808...|
about           [-0.1500445008277...|
Java             [-0.0407485179603...|
wish             [0.11882393807172...|

                | HOW?

                V

        TEXT                                RESULT
[Hi, I, heard, ab... ]     [0.01849065460264...|
[I, wish, Java, c...  ]     [0.05958533100783...|
[Logistic, regres...]     [-0.0110558800399...|

Is there a way to change this default method?


---------------------------------------------------------------------
To unsubscribe e-mail: user-unsubscr...@spark.apache.org

Reply via email to