Hmm <<-- wouldn't work in cluster mode. Are you running spark in local mode?
In any case, I tried running your earlier code and it worked for me on a 250MB csv: scoreModel <- function(parameters){ library(data.table) # I assume this should data.table dat <- data.frame(fread(“file.csv”)) score(dat,parameters) } parameterList <- lapply(1:100, function(i) getParameters(i)) modelScores <- spark.lapply(parameterList, scoreModel) Could you provide more information on your actual code? _____________________________ From: Cinquegrana, Piero <piero.cinquegr...@neustar.biz<mailto:piero.cinquegr...@neustar.biz>> Sent: Wednesday, August 24, 2016 10:37 AM Subject: RE: spark.lapply in SparkR: Error in writeBin(batch, con, endian = "big") To: Cinquegrana, Piero <piero.cinquegr...@neustar.biz<mailto:piero.cinquegr...@neustar.biz>>, Felix Cheung <felixcheun...@hotmail.com<mailto:felixcheun...@hotmail.com>>, <user@spark.apache.org<mailto:user@spark.apache.org>> Hi Spark experts, I was able to get around the broadcast issue by using a global assignment ‘<<-‘ instead of reading the data locally. However, I still get the following error: Error in writeBin(batch, con, endian = "big") : attempting to add too many elements to raw vector Pseudo code: scoreModel <- function(parameters){ library(score) score(dat,parameters) } dat <<- read.csv(‘file.csv’) modelScores <- spark.lapply(parameterList, scoreModel) From: Cinquegrana, Piero [mailto:piero.cinquegr...@neustar.biz] Sent: Tuesday, August 23, 2016 2:39 PM To: Felix Cheung <felixcheun...@hotmail.com<mailto:felixcheun...@hotmail.com>>; user@spark.apache.org<mailto:user@spark.apache.org> Subject: RE: spark.lapply in SparkR: Error in writeBin(batch, con, endian = "big") The output from score() is very small, just a float. The input, however, could be as big as several hundred MBs. I would like to broadcast the dataset to all executors. Thanks, Piero From: Felix Cheung [mailto:felixcheun...@hotmail.com] Sent: Monday, August 22, 2016 10:48 PM To: Cinquegrana, Piero <piero.cinquegr...@neustar.biz<mailto:piero.cinquegr...@neustar.biz>>;user@spark.apache.org<mailto:user@spark.apache.org> Subject: Re: spark.lapply in SparkR: Error in writeBin(batch, con, endian = "big") How big is the output from score()? Also could you elaborate on what you want to broadcast? On Mon, Aug 22, 2016 at 11:58 AM -0700, "Cinquegrana, Piero" <piero.cinquegr...@neustar.biz<mailto:piero.cinquegr...@neustar.biz>> wrote: Hello, I am using the new R API in SparkR spark.lapply (spark 2.0). I am defining a complex function to be run across executors and I have to send the entire dataset, but there is not (that I could find) a way to broadcast the variable in SparkR. I am thus reading the dataset in each executor from disk, but I getting the following error: Error in writeBin(batch, con, endian = "big") : attempting to add too many elements to raw vector Any idea why this is happening? Pseudo code: scoreModel <- function(parameters){ library(read.table) dat <- data.frame(fread(“file.csv”)) score(dat,parameters) } parameterList <- lapply(1:numModels, function(i) getParameters(i)) modelScores <- spark.lapply(parameterList, scoreModel) Piero Cinquegrana MarketShare: A Neustar Solution /Data Science Mobile:+39.329.17.62.539/www.neustar.biz<http://www.neustar.biz/> Reduceyour environmental footprint. Print only if necessary. Follow Neustar: [New%20Picture] Facebook<https://urldefense.proofpoint.com/v2/url?u=https-3A__www.facebook.com_pages_NeuStar_104072179630456-3Ffref-3Dts&d=DQMFAg&c=MOptNlVtIETeDALC_lULrw&r=3gXtazXocjhQ4zuUNllnnttMoPLZDfqBTi42s_2XqUY&m=yceEWMjpUYWGlvL0Alf3CH6um6E6ecHcnX_iH3b3WW8&s=kTklp0PwiGNOEuGCv372Uvx3gC_8jom2kpMSDkt1i6U&e=> [New%20Picture%20(1)(1)] LinkedIn<https://urldefense.proofpoint.com/v2/url?u=https-3A__www.linkedin.com_company_5349-3Ftrk-3Dtyah-26trkInfo-3DclickedVertical-253Acompany-252CclickedEntityId-253A5349-252Cidx-253A2-2D1-2D4-252CtarId-253A1450369757393-252Ctas-253Aneustar&d=DQMFAg&c=MOptNlVtIETeDALC_lULrw&r=3gXtazXocjhQ4zuUNllnnttMoPLZDfqBTi42s_2XqUY&m=yceEWMjpUYWGlvL0Alf3CH6um6E6ecHcnX_iH3b3WW8&s=9N3DRk8Hdq-pUlGXTaUx6fpdayRdhW66Su_NMiSTR2Q&e=> [New%20Picture%20(2)] Twitter<https://urldefense.proofpoint.com/v2/url?u=https-3A__twitter.com_Neustar&d=DQMFAg&c=MOptNlVtIETeDALC_lULrw&r=3gXtazXocjhQ4zuUNllnnttMoPLZDfqBTi42s_2XqUY&m=yceEWMjpUYWGlvL0Alf3CH6um6E6ecHcnX_iH3b3WW8&s=hp6UhqxuA6vRj6lchMSqS0AT_NKE-HGDLDC0aYhEGJ4&e=> The information contained in this email message is intended only for the use of the recipient(s) named above and may contain confidential and/or privileged information. If you are not the intended recipient you have received this email message in error and any review, dissemination, distribution, or copying of this message is strictly prohibited. If you have received this communication in error, please notify us immediately and delete the original message. Piero Cinquegrana MarketShare: A Neustar Solution /Data Science Mobile:+39.329.17.62.539/www.neustar.biz<http://www.neustar.biz/> Reduceyour environmental footprint. Print only if necessary. Follow Neustar: [New%20Picture] Facebook<https://urldefense.proofpoint.com/v2/url?u=https-3A__www.facebook.com_pages_NeuStar_104072179630456-3Ffref-3Dts&d=DQMFAg&c=MOptNlVtIETeDALC_lULrw&r=3gXtazXocjhQ4zuUNllnnttMoPLZDfqBTi42s_2XqUY&m=yceEWMjpUYWGlvL0Alf3CH6um6E6ecHcnX_iH3b3WW8&s=kTklp0PwiGNOEuGCv372Uvx3gC_8jom2kpMSDkt1i6U&e=> [New%20Picture%20(1)(1)] LinkedIn<https://urldefense.proofpoint.com/v2/url?u=https-3A__www.linkedin.com_company_5349-3Ftrk-3Dtyah-26trkInfo-3DclickedVertical-253Acompany-252CclickedEntityId-253A5349-252Cidx-253A2-2D1-2D4-252CtarId-253A1450369757393-252Ctas-253Aneustar&d=DQMFAg&c=MOptNlVtIETeDALC_lULrw&r=3gXtazXocjhQ4zuUNllnnttMoPLZDfqBTi42s_2XqUY&m=yceEWMjpUYWGlvL0Alf3CH6um6E6ecHcnX_iH3b3WW8&s=9N3DRk8Hdq-pUlGXTaUx6fpdayRdhW66Su_NMiSTR2Q&e=> [New%20Picture%20(2)] Twitter<https://urldefense.proofpoint.com/v2/url?u=https-3A__twitter.com_Neustar&d=DQMFAg&c=MOptNlVtIETeDALC_lULrw&r=3gXtazXocjhQ4zuUNllnnttMoPLZDfqBTi42s_2XqUY&m=yceEWMjpUYWGlvL0Alf3CH6um6E6ecHcnX_iH3b3WW8&s=hp6UhqxuA6vRj6lchMSqS0AT_NKE-HGDLDC0aYhEGJ4&e=> The information contained in this email message is intended only for the use of the recipient(s) named above and may contain confidential and/or privileged information. If you are not the intended recipient you have received this email message in error and any review, dissemination, distribution, or copying of this message is strictly prohibited. If you have received this communication in error, please notify us immediately and delete the original message.