You are using lots of tiny executors (128 executor with only 2G
memory), could you try with bigger executor (for example 16G x 16)?

On Fri, Aug 19, 2016 at 8:19 AM, Ben Teeuwen <bteeu...@gmail.com> wrote:
>
> So I wrote some code to reproduce the problem.
>
> I assume here that a pipeline should be able to transform a categorical 
> feature with a few million levels.
> So I create a dataframe with the categorical feature (‘id’), apply a 
> StringIndexer and OneHotEncoder transformer, and run a loop where I increase 
> the amount of levels.
> It breaks at 1.276.000 levels.
>
> Shall I report this as a ticket in JIRA?
>
> ____________
>
>
> from pyspark.sql.functions import rand
> from pyspark.ml.feature import OneHotEncoder, StringIndexer,VectorAssembler
> from pyspark.ml import Pipeline
>
> start_id = 100000
> n = 5000000
> step = (n - start_id) / 25
>
> for i in xrange(start_id,start_id + n,step):
>     print "#########\n {}".format(i)
>     dfr = (sqlContext
>            .range(start_id, start_id + i)
>            .withColumn(‘label', rand(seed=10))
>            .withColumn('feat2', rand(seed=101))
>     #        .withColumn('normal', randn(seed=27))
>            ).repartition(32).cache()
>     # dfr.select("id", rand(seed=10).alias("uniform"), 
> randn(seed=27).alias("normal")).show()
>     dfr.show(1)
>     print "This dataframe has {0} rows (and therefore {0} levels will be one 
> hot encoded)".format(dfr.count())
>
>     categorical_feature  = ['id']
>     stages = []
>
>     for c in categorical_feature:
>         stages.append(StringIndexer(inputCol=c, 
> outputCol="{}Index".format(c)))
>         stages.append(OneHotEncoder(dropLast= False, inputCol = 
> "{}Index".format(c), outputCol = "{}OHE".format(c)))
>
>     columns = ["{}OHE".format(x) for x in categorical_feature]
>     columns.append('feat2')
>
>     assembler = VectorAssembler(
>         inputCols=columns,
>         outputCol="features")
>     stages.append(assembler)
>
>     df2 = dfr
>
>     pipeline = Pipeline(stages=stages)
>     pipeline_fitted = pipeline.fit(df2)
>     df3 = pipeline_fitted.transform(df2)
>     df3.show(1)
>     dfr.unpersist()
>
>
> ____________
>
> Output:
>
>
> #########
>  100000
> +------+---------------------------+-------------------+
> |    id|label                      |              feat2|
> +------+---------------------------+-------------------+
> |183601|        0.38693226548356197|0.04485291680169634|
> +------+---------------------------+-------------------+
> only showing top 1 row
>
> This dataframe has 100000 rows (and therefore 100000 levels will be one hot 
> encoded)
> +------+---------------------------+-------------------+-------+--------------------+--------------------+
> |    id|label                      |              feat2|idIndex|              
>  idOHE|            features|
> +------+---------------------------+-------------------+-------+--------------------+--------------------+
> |183601|        
> 0.38693226548356197|0.04485291680169634|83240.0|(100000,[83240],[...|(100001,[83240,10...|
> +------+---------------------------+-------------------+-------+--------------------+--------------------+
> only showing top 1 row
>
> #########
>  296000
> +------+---------------------------+-------------------+
> |    id|label                      |              feat2|
> +------+---------------------------+-------------------+
> |137008|         0.2996020619810592|0.38693226548356197|
> +------+---------------------------+-------------------+
> only showing top 1 row
>
> This dataframe has 296000 rows (and therefore 296000 levels will be one hot 
> encoded)
> +------+---------------------------+-------------------+-------+--------------------+--------------------+
> |    id|label                      |              feat2|idIndex|              
>  idOHE|            features|
> +------+---------------------------+-------------------+-------+--------------------+--------------------+
> |137008|         
> 0.2996020619810592|0.38693226548356197|35347.0|(296000,[35347],[...|(296001,[35347,29...|
> +------+---------------------------+-------------------+-------+--------------------+--------------------+
> only showing top 1 row
>
> #########
>  492000
> +------+---------------------------+-------------------+
> |    id|label                      |              feat2|
> +------+---------------------------+-------------------+
> |534351|         0.9450641392552516|0.23472935141246665|
> +------+---------------------------+-------------------+
> only showing top 1 row
>
> This dataframe has 492000 rows (and therefore 492000 levels will be one hot 
> encoded)
> +------+---------------------------+-------------------+-------+--------------------+--------------------+
> |    id|label                      |              feat2|idIndex|              
>  idOHE|            features|
> +------+---------------------------+-------------------+-------+--------------------+--------------------+
> |534351|         0.9450641392552516|0.23472935141246665| 
> 3656.0|(492000,[3656],[1...|(492001,[3656,492...|
> +------+---------------------------+-------------------+-------+--------------------+--------------------+
> only showing top 1 row
>
> #########
>  688000
> +------+---------------------------+------------------+
> |    id|label                      |             feat2|
> +------+---------------------------+------------------+
> |573008|         0.3059347083549171|0.4846147657830415|
> +------+---------------------------+------------------+
> only showing top 1 row
>
> This dataframe has 688000 rows (and therefore 688000 levels will be one hot 
> encoded)
> +------+---------------------------+------------------+--------+--------------------+--------------------+
> |    id|label                      |             feat2| idIndex|              
>  idOHE|            features|
> +------+---------------------------+------------------+--------+--------------------+--------------------+
> |573008|         
> 0.3059347083549171|0.4846147657830415|475855.0|(688000,[475855],...|(688001,[475855,6...|
> +------+---------------------------+------------------+--------+--------------------+--------------------+
> only showing top 1 row
>
> #########
>  884000
> +------+---------------------------+------------------+
> |    id|label                      |             feat2|
> +------+---------------------------+------------------+
> |970195|        0.34345290476989165|0.9843176058907069|
> +------+---------------------------+------------------+
> only showing top 1 row
>
> This dataframe has 884000 rows (and therefore 884000 levels will be one hot 
> encoded)
> +------+---------------------------+------------------+--------+--------------------+--------------------+
> |    id|label                      |             feat2| idIndex|              
>  idOHE|            features|
> +------+---------------------------+------------------+--------+--------------------+--------------------+
> |970195|        
> 0.34345290476989165|0.9843176058907069|333915.0|(884000,[333915],...|(884001,[333915,8...|
> +------+---------------------------+------------------+--------+--------------------+--------------------+
> only showing top 1 row
>
> #########
>  1080000
> +------+---------------------------+-----------------+
> |    id|label                      |            feat2|
> +------+---------------------------+-----------------+
> |403758|         0.6333344187975314|0.774327685753309|
> +------+---------------------------+-----------------+
> only showing top 1 row
>
> This dataframe has 1080000 rows (and therefore 1080000 levels will be one hot 
> encoded)
> +------+---------------------------+-----------------+--------+--------------------+--------------------+
> |    id|label                      |            feat2| idIndex|               
> idOHE|            features|
> +------+---------------------------+-----------------+--------+--------------------+--------------------+
> |403758|         
> 0.6333344187975314|0.774327685753309|287898.0|(1080000,[287898]...|(1080001,[287898,...|
> +------+---------------------------+-----------------+--------+--------------------+--------------------+
> only showing top 1 row
>
> #########
>  1276000
> +------+---------------------------+------------------+
> |    id|label                      |             feat2|
> +------+---------------------------+------------------+
> |508726|         0.2513814327408137|0.8480577183702391|
> +------+---------------------------+------------------+
> only showing top 1 row
>
> This dataframe has 1276000 rows (and therefore 1276000 levels will be one hot 
> encoded)
>
> ---------------------------------------------------------------------------
> Py4JJavaError                             Traceback (most recent call last)
> <ipython-input-2-f5c9fe263872> in <module>()
>      38     pipeline = Pipeline(stages=stages)
>      39     pipeline_fitted = pipeline.fit(df2)
> ---> 40     df3 = pipeline_fitted.transform(df2)
>      41     df3.show(1)
>      42     dfr.unpersist()
>
> /opt/spark/2.0.0/python/pyspark/ml/base.py in transform(self, dataset, params)
>     103                 return self.copy(params)._transform(dataset)
>     104             else:
> --> 105                 return self._transform(dataset)
>     106         else:
>     107             raise ValueError("Params must be a param map but got %s." 
> % type(params))
>
> /opt/spark/2.0.0/python/pyspark/ml/pipeline.py in _transform(self, dataset)
>     196     def _transform(self, dataset):
>     197         for t in self.stages:
> --> 198             dataset = t.transform(dataset)
>     199         return dataset
>     200
>
> /opt/spark/2.0.0/python/pyspark/ml/base.py in transform(self, dataset, params)
>     103                 return self.copy(params)._transform(dataset)
>     104             else:
> --> 105                 return self._transform(dataset)
>     106         else:
>     107             raise ValueError("Params must be a param map but got %s." 
> % type(params))
>
> /opt/spark/2.0.0/python/pyspark/ml/wrapper.py in _transform(self, dataset)
>     227     def _transform(self, dataset):
>     228         self._transfer_params_to_java()
> --> 229         return DataFrame(self._java_obj.transform(dataset._jdf), 
> dataset.sql_ctx)
>     230
>     231
>
> /opt/spark/2.0.0/python/lib/py4j-0.10.1-src.zip/py4j/java_gateway.py in 
> __call__(self, *args)
>     931         answer = self.gateway_client.send_command(command)
>     932         return_value = get_return_value(
> --> 933             answer, self.gateway_client, self.target_id, self.name)
>     934
>     935         for temp_arg in temp_args:
>
> /opt/spark/2.0.0/python/pyspark/sql/utils.py in deco(*a, **kw)
>      61     def deco(*a, **kw):
>      62         try:
> ---> 63             return f(*a, **kw)
>      64         except py4j.protocol.Py4JJavaError as e:
>      65             s = e.java_exception.toString()
>
> /opt/spark/2.0.0/python/lib/py4j-0.10.1-src.zip/py4j/protocol.py in 
> get_return_value(answer, gateway_client, target_id, name)
>     310                 raise Py4JJavaError(
>     311                     "An error occurred while calling {0}{1}{2}.\n".
> --> 312                     format(target_id, ".", name), value)
>     313             else:
>     314                 raise Py4JError(
>
> Py4JJavaError: An error occurred while calling o408.transform.
> : java.lang.OutOfMemoryError: GC overhead limit exceeded
> at scala.collection.immutable.Stream$.from(Stream.scala:1262)
> at scala.collection.immutable.Stream$$anonfun$from$1.apply(Stream.scala:1262)
> at scala.collection.immutable.Stream$$anonfun$from$1.apply(Stream.scala:1262)
> at scala.collection.immutable.Stream$Cons.tail(Stream.scala:1233)
> at scala.collection.immutable.Stream$Cons.tail(Stream.scala:1223)
> at 
> scala.collection.LinearSeqOptimized$class.loop$1(LinearSeqOptimized.scala:274)
> at 
> scala.collection.LinearSeqOptimized$class.lengthCompare(LinearSeqOptimized.scala:277)
> at scala.collection.immutable.Stream.lengthCompare(Stream.scala:202)
> at scala.collection.SeqViewLike$Zipped$class.length(SeqViewLike.scala:133)
> at scala.collection.SeqViewLike$$anon$9.length(SeqViewLike.scala:203)
> at scala.collection.SeqViewLike$Mapped$class.length(SeqViewLike.scala:66)
> at scala.collection.SeqViewLike$$anon$3.length(SeqViewLike.scala:197)
> at scala.collection.SeqLike$class.size(SeqLike.scala:106)
> at scala.collection.SeqViewLike$AbstractTransformed.size(SeqViewLike.scala:37)
> at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:285)
> at 
> scala.collection.SeqViewLike$AbstractTransformed.toArray(SeqViewLike.scala:37)
> at 
> org.apache.spark.ml.attribute.AttributeGroup$$anonfun$3.apply(AttributeGroup.scala:72)
> at 
> org.apache.spark.ml.attribute.AttributeGroup$$anonfun$3.apply(AttributeGroup.scala:72)
> at scala.Option.map(Option.scala:146)
> at 
> org.apache.spark.ml.attribute.AttributeGroup.<init>(AttributeGroup.scala:70)
> at 
> org.apache.spark.ml.attribute.AttributeGroup.<init>(AttributeGroup.scala:65)
> at 
> org.apache.spark.ml.attribute.AttributeGroup$.fromMetadata(AttributeGroup.scala:234)
> at 
> org.apache.spark.ml.attribute.AttributeGroup$.fromStructField(AttributeGroup.scala:246)
> at 
> org.apache.spark.ml.feature.OneHotEncoder.transform(OneHotEncoder.scala:139)
> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
> at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
> at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.lang.reflect.Method.invoke(Method.java:606)
> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
> at py4j.Gateway.invoke(Gateway.java:280)
> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:128)
>
>
>
>
> Spark Properties
> NameValue
> spark.app.namepyspark-shell
> spark.driver.cores1
> spark.driver.extraJavaOptions-XX:+UnlockDiagnosticVMOptions 
> -XX:+PerfDisableSharedMem
> spark.driver.memory2g
> spark.dynamicAllocation.enabledFALSE
> spark.eventLog.dirhdfs:///spark/history
> spark.eventLog.enabledTRUE
> spark.executor.cores1
> spark.executor.extraJavaOptions-XX:+UnlockDiagnosticVMOptions 
> -XX:+PerfDisableSharedMem
> spark.executor.iddriver
> spark.executor.instances128
> spark.executor.memory2g
> spark.history.fs.logDirectoryhdfs:///spark/history
> spark.masteryarn-client
> spark.memory.fraction0.7
> spark.memory.storageFraction0.5
> spark.rdd.compressTRUE
> spark.scheduler.modeFIFO
> spark.serializer.objectStreamReset100
> spark.shuffle.service.enabledFALSE
> spark.speculationTRUE
> spark.submit.deployModeclient
> spark.task.maxFailures10
> spark.yarn.executor.memoryOverhead2048
> spark.yarn.isPythonTRUE
>
>
> On Aug 11, 2016, at 10:24 PM, Nick Pentreath <nick.pentre...@gmail.com> wrote:
>
> Ok, interesting. Would be interested to see how it compares.
>
> By the way, the feature size you select for the hasher should be a power of 2 
> (e.g. 2**24 to 2**26 may be worth trying) to ensure the feature indexes are 
> evenly distributed (see the section on HashingTF under 
> http://spark.apache.org/docs/latest/ml-features.html#tf-idf).
>
> On Thu, 11 Aug 2016 at 22:14 Ben Teeuwen <bteeu...@gmail.com> wrote:
>>
>> Thanks Nick, I played around with the hashing trick. When I set numFeatures 
>> to the amount of distinct values for the largest sparse feature, I ended up 
>> with half of them colliding. When raising the numFeatures to have less 
>> collisions, I soon ended up with the same memory problems as before. To be 
>> honest, I didn’t test the impact of having more or less collisions on the 
>> quality of the predictions, but tunnel visioned into getting it to work with 
>> the full sparsity.
>>
>> Before I worked in RDD land; zipWithIndex on rdd with distinct values + one 
>> entry ‘missing’ for missing values during predict, collectAsMap, broadcast 
>> the map, udf generating sparse vector, assembling the vectors manually). To 
>> move into dataframe land, I wrote:
>>
>> def getMappings(mode):
>>     mappings = defaultdict(dict)
>>     max_index = 0
>>     for c in cat_int[:]:    # for every categorical variable
>>
>>         logging.info("starting with {}".format(c))
>>         if mode == 'train':
>>             grouped = (df2
>>                 .groupBy(c).count().orderBy('count', ascending = False)  # 
>> get counts, ordered from largest to smallest
>>                 .selectExpr("*", "1 as n")      # prepare for window 
>> function summing up 1s before current row to create a RANK
>>                 .selectExpr("*", "SUM(n) OVER (ORDER BY count DESC ROWS 
>> BETWEEN UNBOUNDED PRECEDING AND 0 PRECEDING) + {} AS 
>> index".format(max_index))
>>                 .drop('n') # drop the column with static 1 values used for 
>> the cumulative sum
>>                 )
>>             logging.info("Got {} rows.".format(grouped.count()))
>>             grouped.show()
>>             logging.info('getting max')
>>             max_index = grouped.selectExpr("MAX(index) t").rdd.map(lambda r: 
>> r.t).first()  # update the max index so next categorical feature starts with 
>> it.
>>             logging.info("max_index has become: {}".format(max_index))
>>             logging.info('adding missing value, so we also train on this and 
>> prediction data missing it. ')
>>             schema = grouped.schema
>>             logging.info(schema)
>>             grouped = grouped.union(spark.createDataFrame([('missing', 0, 
>> max_index + 1)], schema))  # add index for missing value for values during 
>> predict that are unseen during training.
>>             max_index += 1
>>             saveto = "{}/{}".format(path, c)
>>             logging.info("Writing to: {}".format(saveto))
>>             grouped.write.parquet(saveto, mode = 'overwrite')
>>
>>         elif mode == 'predict':
>>             loadfrom = "{}/{}".format(path, c)
>>             logging.info("Reading from: {}".format(loadfrom))
>>             grouped = spark.read.parquet(loadfrom)
>>
>>         logging.info("Adding to dictionary")
>>         mappings[c] = grouped.rdd.map(lambda r: r.asDict()).map(lambda d: 
>> (d[c], d['index'])).collectAsMap()  # build up dictionary to be broadcasted 
>> later on, used for creating sparse vectors
>>         max_index = grouped.selectExpr("MAX(index) t").rdd.map(lambda r: 
>> r.t).first()
>>
>>     logging.info("Sanity check for indexes:")
>>     for c in cat_int[:]:
>>         logging.info("{} min: {} max: {}".format(c, 
>> min(mappings[c].values()), max(mappings[c].values())))   # some logging to 
>> confirm the indexes.
>>         logging.info("Missing value = {}".format(mappings[c]['missing']))
>>     return max_index, mappings
>>
>> I’d love to see the StringIndexer + OneHotEncoder transformers cope with 
>> missing values during prediction; for now I’ll work with the hacked stuff 
>> above :).
>> (.. and I should compare the performance with using the hashing trick.)
>>
>> Ben
>
>

---------------------------------------------------------------------
To unsubscribe e-mail: user-unsubscr...@spark.apache.org

Reply via email to