Some details of an example table hive table that spark 2.0 could not read...
SerDe Library: org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe InputFormat: org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat OutputFormat: org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat COLUMN_STATS_ACCURATE false kite.compression.type snappy numFiles 0 numRows -1 rawDataSize -1 totalSize 0 All fields within the table are of type "string" and there are less than 20 of them. When I say that spark 2.0 cannot read the hive table, I mean that when I attempt to execute the following from a pyspark shell... spark = SparkSession.builder.enableHiveSupport().getOrCreate() df = spark.sql("SELECT * FROM dra_agency_analytics.raw_ewt_agcy_dim") ... the dataframe df has the correct number of rows and the correct columns, but all values read as "None". -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/Spark-1-6-2-can-read-hive-tables-created-with-sqoop-but-Spark-2-0-0-cannot-tp27502.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org