Seems the performance difference comes from `CassandraSourceRelation`.
I'm not familiar with the implementation though, I guess the filter `IN` is
pushed down
into the datasource and the other not.

You'd better off checking performance metrics in webUI.

// maropu

On Thu, Aug 4, 2016 at 8:41 PM, Marco Colombo <ing.marco.colo...@gmail.com>
wrote:

> Ok, thanx.
> The 2 plan are very similar
>
> with in condition
>
> +--------------------------------------------------------------------------------------------------------------------------------------------------+--+
> |
> plan                                                                       |
>
> +--------------------------------------------------------------------------------------------------------------------------------------------------+--+
> | == Physical Plan ==
>                                                                          |
> | TungstenAggregate(key=[id#0L],
> functions=[(avg(avg#2),mode=Final,isDistinct=false)],
> output=[id#0L,_c1#81])                                      |
> | +- TungstenExchange hashpartitioning(id#0L,10), None
>                                                                         |
> |    +- TungstenAggregate(key=[id#0L],
> functions=[(avg(avg#2),mode=Partial,isDistinct=false)],
> output=[id#0L,sum#85,count#86L])                    |
> |       +- Scan
> org.apache.spark.sql.cassandra.CassandraSourceRelation@49243f65[id#0L,avg#2]
> PushedFilters: [In(id,[Ljava.lang.Object;@6f8b2e9d)]  |
>
> +--------------------------------------------------------------------------------------------------------------------------------------------------+--+
>
> with the or condition
>
> +--------------------------------------------------------------------------------------------------------------------------------------------------+--+
> |
> plan                                                                       |
>
> +--------------------------------------------------------------------------------------------------------------------------------------------------+--+
> | == Physical Plan ==
>                                                                          |
> | TungstenAggregate(key=[id#0L],
> functions=[(avg(avg#2),mode=Final,isDistinct=false)],
> output=[id#0L,_c1#88])                                      |
> | +- TungstenExchange hashpartitioning(id#0L,10), None
>                                                                         |
> |    +- TungstenAggregate(key=[id#0L],
> functions=[(avg(avg#2),mode=Partial,isDistinct=false)],
> output=[id#0L,sum#92,count#93L])                    |
> |       +- Filter ((id#0L = 94) || (id#0L = 2))
>                                                                          |
> |          +- Scan
> org.apache.spark.sql.cassandra.CassandraSourceRelation@49243f65[id#0L,avg#2]
> PushedFilters: [Or(EqualTo(id,94),EqualTo(id,2))]  |
>
> +--------------------------------------------------------------------------------------------------------------------------------------------------+--+
>
>
> Filters are pushed down, so I cannot realize why it is performing a so big
> data extraction in case of or. It's like a full table scan.
>
> Any advice?
>
> Thanks!
>
>
> 2016-08-04 13:25 GMT+02:00 Takeshi Yamamuro <linguin....@gmail.com>:
>
>> Hi,
>>
>> Please type `sqlCtx.sql("select * .... ").explain` to show execution
>> plans.
>> Also, you can kill jobs from webUI.
>>
>> // maropu
>>
>>
>> On Thu, Aug 4, 2016 at 4:58 PM, Marco Colombo <
>> ing.marco.colo...@gmail.com> wrote:
>>
>>> Hi all, I've a question on how hive+spark are handling data.
>>>
>>> I've started a new HiveContext and I'm extracting data from cassandra.
>>> I've configured spark.sql.shuffle.partitions=10.
>>> Now, I've following query:
>>>
>>> select d.id, avg(d.avg) from v_points d where id=90 group by id;
>>>
>>> I see that 10 task are submitted and execution is fast. Every id on that
>>> table has 2000 samples.
>>>
>>> But if I just add a new id, as:
>>>
>>> select d.id, avg(d.avg) from v_points d where id=90 or id=2 group by id;
>>>
>>> it adds 663 task and query does not end.
>>>
>>> If I write query with in () like
>>>
>>> select d.id, avg(d.avg) from v_points d where id in (90,2) group by id;
>>>
>>> query is again fast.
>>>
>>> How can I get the 'execution plan' of the query?
>>>
>>> And also, how can I kill the long running submitted tasks?
>>>
>>> Thanks all!
>>>
>>
>>
>>
>> --
>> ---
>> Takeshi Yamamuro
>>
>
>
>
> --
> Ing. Marco Colombo
>



-- 
---
Takeshi Yamamuro

Reply via email to