Ho Sean, thanks for the reply. I just omitted the real path which would point on my file system. I just posted the real one.
On 3 Aug 2016 19:09, "Sean Owen" <so...@cloudera.com> wrote: > file: "absolute directory" > does not sound like a valid URI > > On Wed, Aug 3, 2016 at 11:05 AM, Flavio <marchifla...@gmail.com> wrote: > > Hello everyone, > > > > I am try to run a very easy example but unfortunately I am stuck on the > > follow exception: > > > > Exception in thread "main" java.lang.IllegalArgumentException: > > java.net.URISyntaxException: Relative path in absolute URI: file: > "absolute > > directory" > > > > I was wondering if anyone got this exception trying to run the examples > on > > the spark git repo; actually the code I am try to run is the follow: > > > > > > //$example on$ > > import org.apache.spark.ml.Pipeline; > > import org.apache.spark.ml.PipelineModel; > > import org.apache.spark.ml.PipelineStage; > > import org.apache.spark.ml.evaluation.RegressionEvaluator; > > import org.apache.spark.ml.feature.VectorIndexer; > > import org.apache.spark.ml.feature.VectorIndexerModel; > > import org.apache.spark.ml.regression.RandomForestRegressionModel; > > import org.apache.spark.ml.regression.RandomForestRegressor; > > import org.apache.spark.sql.Dataset; > > import org.apache.spark.sql.Row; > > import org.apache.spark.sql.SparkSession; > > //$example off$ > > > > public class JavaRandomForestRegressorExample { > > public static void main(String[] args) { > > System.setProperty("hadoop.home.dir", "C:\\winutils"); > > > > SparkSession spark = SparkSession > > .builder() > > .master("local[*]") > > > .appName("JavaRandomForestRegressorExample") > > .getOrCreate(); > > > > // $example on$ > > // Load and parse the data file, converting it to a > DataFrame. > > Dataset<Row> data = > > spark.read().format("libsvm").load("C:\\data\\sample_libsvm_data.txt"); > > > > // Automatically identify categorical features, and > index them. > > // Set maxCategories so features with > 4 distinct > values are treated as > > // continuous. > > VectorIndexerModel featureIndexer = new > > VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures") > > .setMaxCategories(4).fit(data); > > > > // Split the data into training and test sets (30% held > out for testing) > > Dataset<Row>[] splits = data.randomSplit(new double[] { > 0.7, 0.3 }); > > Dataset<Row> trainingData = splits[0]; > > Dataset<Row> testData = splits[1]; > > > > // Train a RandomForest model. > > RandomForestRegressor rf = new > > > RandomForestRegressor().setLabelCol("label").setFeaturesCol("indexedFeatures"); > > > > // Chain indexer and forest in a Pipeline > > Pipeline pipeline = new Pipeline().setStages(new > PipelineStage[] { > > featureIndexer, rf }); > > > > // Train model. This also runs the indexer. > > PipelineModel model = pipeline.fit(trainingData); > > > > // Make predictions. > > Dataset<Row> predictions = model.transform(testData); > > > > // Select example rows to display. > > predictions.select("prediction", "label", > "features").show(5); > > > > // Select (prediction, true label) and compute test error > > RegressionEvaluator evaluator = new > > RegressionEvaluator().setLabelCol("label").setPredictionCol("prediction") > > .setMetricName("rmse"); > > double rmse = evaluator.evaluate(predictions); > > System.out.println("Root Mean Squared Error (RMSE) on > test data = " + > > rmse); > > > > RandomForestRegressionModel rfModel = > (RandomForestRegressionModel) > > (model.stages()[1]); > > System.out.println("Learned regression forest model:\n" + > > rfModel.toDebugString()); > > // $example off$ > > > > spark.stop(); > > } > > } > > > > > > Thanks to everyone for reading/answering! > > > > Flavio > > > > > > > > -- > > View this message in context: > http://apache-spark-user-list.1001560.n3.nabble.com/java-net-URISyntaxException-Relative-path-in-absolute-URI-tp27466.html > > Sent from the Apache Spark User List mailing list archive at Nabble.com. > > > > --------------------------------------------------------------------- > > To unsubscribe e-mail: user-unsubscr...@spark.apache.org > > >