Hi Alexander ,
Thanks a lot for your comments.
Spark seems not that stable when it comes to run big job, too much data or too 
much time, yes, the problem is gone when reducing the scale.Sometimes reset 
some job running parameter (such as --drive-memory may help in GC issue) , 
sometimes may rewrite the codes by applying other algorithm.
As you commented the shuffle operation, it sounds some as the reason ...
Best Wishes !  
 

    On Friday, June 17, 2016 8:45 PM, Alexander Kapustin <kp...@hotmail.com> 
wrote:
 

 #yiv4291334619 #yiv4291334619 -- _filtered #yiv4291334619 
{font-family:Wingdings;panose-1:5 0 0 0 0 0 0 0 0 0;} _filtered #yiv4291334619 
{panose-1:2 4 5 3 5 4 6 3 2 4;} _filtered #yiv4291334619 
{font-family:Calibri;panose-1:2 15 5 2 2 2 4 3 2 4;}#yiv4291334619 
#yiv4291334619 p.yiv4291334619MsoNormal, #yiv4291334619 
li.yiv4291334619MsoNormal, #yiv4291334619 div.yiv4291334619MsoNormal 
{margin:0cm;margin-bottom:.0001pt;font-size:11.0pt;}#yiv4291334619 a:link, 
#yiv4291334619 span.yiv4291334619MsoHyperlink 
{color:blue;text-decoration:underline;}#yiv4291334619 a:visited, #yiv4291334619 
span.yiv4291334619MsoHyperlinkFollowed 
{color:#954F72;text-decoration:underline;}#yiv4291334619 
p.yiv4291334619MsoListParagraph, #yiv4291334619 
li.yiv4291334619MsoListParagraph, #yiv4291334619 
div.yiv4291334619MsoListParagraph 
{margin-top:0cm;margin-right:0cm;margin-bottom:0cm;margin-left:36.0pt;margin-bottom:.0001pt;font-size:11.0pt;}#yiv4291334619
 span.yiv4291334619qtd-expansion-text {}#yiv4291334619 
.yiv4291334619MsoChpDefault {} _filtered #yiv4291334619 {margin:2.0cm 42.5pt 
2.0cm 3.0cm;}#yiv4291334619 div.yiv4291334619WordSection1 {}#yiv4291334619 
_filtered #yiv4291334619 {} _filtered #yiv4291334619 {font-family:Symbol;} 
_filtered #yiv4291334619 {} _filtered #yiv4291334619 {font-family:Wingdings;} 
_filtered #yiv4291334619 {font-family:Symbol;} _filtered #yiv4291334619 {} 
_filtered #yiv4291334619 {font-family:Wingdings;} _filtered #yiv4291334619 
{font-family:Symbol;} _filtered #yiv4291334619 {} _filtered #yiv4291334619 
{font-family:Wingdings;}#yiv4291334619 ol {margin-bottom:0cm;}#yiv4291334619 ul 
{margin-bottom:0cm;}#yiv4291334619 Hi Zhiliang,    Yes, find the exact reason 
of failure is very difficult. We have issue with similar behavior, due to 
limited time for investigation, we reduce the number of processed data, and 
problem has gone.    Some points which may help you in investigations: ·        
If you start spark-history-server (or monitoring running application on 4040 
port), look into failed stages (if any). By default Spark try to retry stage 
execution 2 times, after that job fails·        Some useful information may 
contains in yarn logs on Hadoop nodes (yarn-<user>-nodemanager-<host>.log), but 
this is only information about killed container, not about the reasons why this 
stage took so much memory   As I can see in your logs, failed step relates to 
shuffle operation, could you change your job to avoid massive shuffle 
operation?    --WBR, Alexander   From: Zhiliang Zhu
Sent: 17 июня 2016 г. 14:10
To: User; kp...@hotmail.com
Subject: Re: spark job automatically killed without rhyme or reason   
Show original message

Hi Alexander,
is your yarn userlog   just for the executor log ?
as for those logs seem a little difficult to exactly decide the wrong point, 
due to sometimes successful job may also have some kinds of the error  ... but 
will repair itself.spark seems not that stable currently     ...
Thank you in advance~  

On Friday, June 17, 2016 6:53 PM, Zhiliang Zhu <zchl.j...@yahoo.com> wrote:


Hi Alexander,
Thanks a lot for your reply.
Yes, submitted by yarn.Do you just mean in the executor log file by way of yarn 
logs -applicationId id, 
in this file, both in some containers' stdout  and stderr :
16/06/17 14:05:40 INFO client.TransportClientFactory: Found inactive connection 
to ip-172-31-20-104/172.31.20.104:49991, creating a new one.
16/06/17 14:05:40 ERROR shuffle.RetryingBlockFetcher: Exception while beginning 
fetch of 1 outstanding blocksjava.io.IOException:Failed to connect to 
ip-172-31-20-104/172.31.20.104:49991              <------may it be due to that 
spark is not stable, and spark may repair itself for these kinds of error ? 
(saw some in successful run )
        at 
org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:193)
        at 
org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:156)............Caused
 by: java.net.ConnectException: Connection refused: 
ip-172-31-20-104/172.31.20.104:49991        at 
sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)        at 
sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)        
at 
io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:224)
        at 
io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:289)
        at 
io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:528)     
   at 
io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
        at 
io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)    
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)        at 
io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)

16/06/17 11:54:38 ERROR executor.Executor:Managed memory leak detected; size = 
16777216 bytes, TID = 100323           <-----       would it be memory leak 
issue? though no GC exception threw for other normal kinds of out of memory 
16/06/17 11:54:38 ERROR executor.Executor: Exception in task 145.0 in stage 
112.0 (TID 100323)java.io.IOException: Filesystem closed        at 
org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:837)        at 
org.apache.hadoop.hdfs.DFSInputStream.close(DFSInputStream.java:679)        at 
org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:903)        at 
java.io.DataInputStream.readFully(DataInputStream.java:195)        at 
org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripeFooter(RecordReaderImpl.java:2265)
        at 
org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripe(RecordReaderImpl.java:2635)...........
sorry, there is some information in the middle of the log file, but all is okay 
at the end  part of the log .in the run log file as log_file generated by 
command:nohup spark-submit --driver-memory 20g  --num-executors 20 --class 
com.dianrong.Main  --master yarn-client  dianrong-retention_2.10-1.0.jar  
doAnalysisExtremeLender  /tmp/drretention/test/output  0.96  
/tmp/drretention/evaluation/test_karthik/lgmodel   
/tmp/drretention/input/feature_6.0_20151001_20160531_behavior_201511_201604_summary/lenderId_feature_live
 50 > log_file

executor 40 lost                        <------    would it be due to this, 
sometimes job may fail for the reason
..........
        at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:903)  
      at java.io.DataInputStream.readFully(DataInputStream.java:195)        at 
org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripeFooter(RecordReaderImpl.java:2265)
        at 
org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.readStripe(RecordReaderImpl.java:2635)..........

Thanks in advance!




On Friday, June 17, 2016 3:52 PM, Alexander Kapustin <kp...@hotmail.com> wrote:


#yiv4291334619 #yiv4291334619 --#yiv4291334619x_yiv7679307012 {}#yiv4291334619 
#yiv4291334619x_yiv7679307012 {font-family:Calibri;}#yiv4291334619 
#yiv4291334619x_yiv7679307012 p.yiv4291334619x_yiv7679307012MsoNormal, 
#yiv4291334619 #yiv4291334619x_yiv7679307012 
li.yiv4291334619x_yiv7679307012MsoNormal, #yiv4291334619 
#yiv4291334619x_yiv7679307012 div.yiv4291334619x_yiv7679307012MsoNormal 
{margin:0cm;margin-bottom:.0001pt;font-size:11.0pt;}#yiv4291334619 
#yiv4291334619x_yiv7679307012 #yiv4291334619x_yiv7679307012 
span.yiv4291334619x_yiv7679307012MsoHyperlink 
{color:blue;text-decoration:underline;}#yiv4291334619 
#yiv4291334619x_yiv7679307012 #yiv4291334619x_yiv7679307012 
span.yiv4291334619x_yiv7679307012MsoHyperlinkFollowed 
{color:#954F72;text-decoration:underline;}#yiv4291334619 
#yiv4291334619x_yiv7679307012 {margin:2.0cm 42.5pt 2.0cm 3.0cm;}#yiv4291334619 
Hi, Did you submit spark job via YARN? In some cases (memory configuration 
probably), yarn can kill containers where spark tasks are executed. In this 
situation, please check yarn userlogs for more information… --WBR, Alexander 
From: Zhiliang Zhu
Sent: 17 июня 2016 г. 9:36
To: Zhiliang Zhu;User
Subject: Re: spark job automatically killed without rhyme or reason anyone ever 
met the similar problem, which is quite strange ... 

On Friday, June 17, 2016 2:13 PM, Zhiliang Zhu <zchl.j...@yahoo.com.INVALID> 
wrote:


Hi All,
I have a big job which mainly takes more than one hour to run the whole, 
however, it is very much unreasonable to exit & finish to run midway (almost 
80% of the job finished actually, but not all), without any apparent error or 
exception log.
I submitted the same job for many times, it is same as that.In the last line of 
the run log, just one word "killed" to end, or sometimes not any  other wrong 
log, all seems okay but should not finish.
What is the way for the problem? Is there any other friends that ever met the 
similar issue ...
Thanks in advance!  









  

Reply via email to