Hi PySpark users, We need to be able to run large Hive queries in PySpark 1.2.1. Users are running PySpark on an Edge Node, and submit jobs to a Cluster that allocates YARN resources to the clients. We are using MapR as the Hadoop Distribution on top of Hive 0.13 and Spark 1.2.1.
Currently, our process for writing queries works only for small result sets, for example: *from pyspark.sql import HiveContext* *sqlContext = HiveContext(sc)* *results = sqlContext.sql("select column from database.table limit 10").collect()* *results* <outputs resultset here> How do I save the HiveQL query to RDD first, then output the results? This is the error I get when running a query that requires output of 400,000 rows: *from pyspark.sql import HiveContext* *sqlContext = HiveContext(sc)* *results = sqlContext.sql("select column from database.table").collect()* *results* ... /path/to/mapr/spark/spark-1.2.1/python/pyspark/sql.py in collect(self) 1976 """ 1977 with SCCallSiteSync(self.context) as css:-> 1978 bytesInJava = self._jschema_rdd.baseSchemaRDD().collectToPython().iterator() 1979 cls = _create_cls(self.schema()) 1980 return map(cls, self._collect_iterator_through_file(bytesInJava)) /path/to/mapr/spark/spark-1.2.1/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py in __call__(self, *args) 536 answer = self.gateway_client.send_command(command) 537 return_value = get_return_value(answer, self.gateway_client,--> 538 self.target_id, self.name) 539 540 for temp_arg in temp_args: /path/to/mapr/spark/spark-1.2.1/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name) 298 raise Py4JJavaError( 299 'An error occurred while calling {0}{1}{2}.\n'.--> 300 format(target_id, '.', name), value) 301 else: 302 raise Py4JError( Py4JJavaError: An error occurred while calling o76.collectToPython. : org.apache.spark.SparkException: Job aborted due to stage failure: Exception while getting task result: java.io.IOException: Failed to connect to cluster_node/IP_address:port at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696) at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420) at akka.actor.Actor$class.aroundReceive(Actor.scala:465) at org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516) at akka.actor.ActorCell.invoke(ActorCell.scala:487) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238) at akka.dispatch.Mailbox.run(Mailbox.scala:220) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) For this example, ideally, this query should output the 400,000 row resultset. Thanks for your help, *Nikolay Voronchikhin* https://www.linkedin.com/in/nvoronchikhin *E-mail: nvoronchik...@gmail.com <nvoronchik...@gmail.com>* * <nvoronchik...@gmail.com>*