it says: hdfs://namenode:54310/user/hadoop/.sparkStaging/ application_1463479181441_0003/SparkTwittterStreamingJob-0.0. 1-SNAPSHOT-jar-with-dependencies.jar
java.io.FileNotFoundException: File does not exist: hdfs://namenode:54310/user/hadoop/.sparkStaging/application_1463479181441_0003/SparkTwittterStreamingJob-0.0.1-SNAPSHOT-jar-with-dependencies.jar so looks like you are missing a jar from the location you are running the program On Tue, May 17, 2016 at 10:38 PM, <spark....@yahoo.com.invalid> wrote: > Hi friends, > > I am running spark streaming job on yarn cluster mode but it is failing. > It is working fine in yarn-client mode. and also spark-examples are running > good in spark-cluster mode. below is the log file for the spark streaming > job on yarn-cluster mode. Can anyone help me on this. > > > SLF4J: Class path contains multiple SLF4J bindings. > SLF4J: Found binding in > [jar:file:/tmp/hadoop-hadoop/nm-local-dir/usercache/hadoop/filecache/15/spark-assembly-1.5.2-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] > SLF4J: Found binding in > [jar:file:/usr/local/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] > SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an > explanation. > SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] > 16/05/17 16:17:47 INFO yarn.ApplicationMaster: Registered signal handlers for > [TERM, HUP, INT] > 16/05/17 16:17:48 WARN util.NativeCodeLoader: Unable to load native-hadoop > library for your platform... using builtin-java classes where applicable > 16/05/17 16:17:48 INFO yarn.ApplicationMaster: ApplicationAttemptId: > appattempt_1463479181441_0003_000002 > 16/05/17 16:17:49 INFO spark.SecurityManager: Changing view acls to: hadoop > 16/05/17 16:17:49 INFO spark.SecurityManager: Changing modify acls to: hadoop > 16/05/17 16:17:49 INFO spark.SecurityManager: SecurityManager: authentication > disabled; ui acls disabled; users with view permissions: Set(hadoop); users > with modify permissions: Set(hadoop) > 16/05/17 16:17:49 INFO yarn.ApplicationMaster: Starting the user application > in a separate Thread > 16/05/17 16:17:49 INFO yarn.ApplicationMaster: Waiting for spark context > initialization > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: found keyword== > userTwitterToken=9ACWejzaHVyxpPDYCHnDsO98U > 01safwuyLO8B8S94v5i0p90SzxEPZqUUmCaDkYOj1FKN1dXKZC > 702828259411521536-PNoSkM8xNIvuEVvoQ9Pj8fj7D8CkYp1 > OntoQStrmwrztnzi1MSlM56sKc23bqUCC2WblbDPiiP8P > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: DemoJava called = > 9ACWejzaHVyxpPDYCHnDsO98U 01safwuyLO8B8S94v5i0p90SzxEPZqUUmCaDkYOj1FKN1dXKZC > 702828259411521536-PNoSkM8xNIvuEVvoQ9Pj8fj7D8CkYp1 > OntoQStrmwrztnzi1MSlM56sKc23bqUCC2WblbDPiiP8P > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: DemoJava called = 1 > 16/05/17 16:17:49 INFO yarn.ApplicationMaster: Waiting for spark context > initialization ... > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: DemoJava called = 2 > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: DemoJava called = > Tue May 17 00:00:00 IST 2016 > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: DemoJava called = > Tue May 17 00:00:00 IST 2016 > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: DemoJava called = > nokia,samsung,iphone,blackberry > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: DemoJava called = > All > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: DemoJava called = mo > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: DemoJava called = en > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: DemoJava called = > retweet > 16/05/17 16:17:49 INFO spark.SparkTweetStreamingHDFSLoad: Twitter > Token...........[Ljava.lang.String;@3ee5e48d > 16/05/17 16:17:49 INFO spark.SparkContext: Running Spark version 1.5.2 > 16/05/17 16:17:49 WARN spark.SparkConf: > SPARK_JAVA_OPTS was detected (set to '-Dspark.driver.port=53411'). > This is deprecated in Spark 1.0+. > > Please instead use: > - ./spark-submit with conf/spark-defaults.conf to set defaults for an > application > - ./spark-submit with --driver-java-options to set -X options for a driver > - spark.executor.extraJavaOptions to set -X options for executors > - SPARK_DAEMON_JAVA_OPTS to set java options for standalone daemons (master > or worker) > > 16/05/17 16:17:49 WARN spark.SparkConf: Setting > 'spark.executor.extraJavaOptions' to '-Dspark.driver.port=53411' as a > work-around. > 16/05/17 16:17:49 WARN spark.SparkConf: Setting > 'spark.driver.extraJavaOptions' to '-Dspark.driver.port=53411' as a > work-around. > 16/05/17 16:17:49 INFO spark.SecurityManager: Changing view acls to: hadoop > 16/05/17 16:17:49 INFO spark.SecurityManager: Changing modify acls to: hadoop > 16/05/17 16:17:49 INFO spark.SecurityManager: SecurityManager: authentication > disabled; ui acls disabled; users with view permissions: Set(hadoop); users > with modify permissions: Set(hadoop) > 16/05/17 16:17:49 INFO slf4j.Slf4jLogger: Slf4jLogger started > 16/05/17 16:17:49 INFO Remoting: Starting remoting > 16/05/17 16:17:50 INFO Remoting: Remoting started; listening on addresses > :[akka.tcp://sparkDriver@172.16.28.195:53411] > 16/05/17 16:17:50 INFO util.Utils: Successfully started service 'sparkDriver' > on port 53411. > 16/05/17 16:17:50 INFO spark.SparkEnv: Registering MapOutputTracker > 16/05/17 16:17:50 INFO spark.SparkEnv: Registering BlockManagerMaster > 16/05/17 16:17:50 INFO storage.DiskBlockManager: Created local directory at > /tmp/hadoop-hadoop/nm-local-dir/usercache/hadoop/appcache/application_1463479181441_0003/blockmgr-fe61bf50-b650-4db9-989a-11199df6c1ac > 16/05/17 16:17:50 INFO storage.MemoryStore: MemoryStore started with capacity > 1966.1 MB > 16/05/17 16:17:50 INFO spark.HttpFileServer: HTTP File server directory is > /tmp/hadoop-hadoop/nm-local-dir/usercache/hadoop/appcache/application_1463479181441_0003/spark-5b36342a-6212-4cea-80da-b1961cab161c/httpd-20144975-e972-4b5a-8592-be94029cd0eb > 16/05/17 16:17:50 INFO spark.HttpServer: Starting HTTP Server > 16/05/17 16:17:50 INFO server.Server: jetty-8.y.z-SNAPSHOT > 16/05/17 16:17:50 INFO server.AbstractConnector: Started > SocketConnector@0.0.0.0:47195 > 16/05/17 16:17:50 INFO util.Utils: Successfully started service 'HTTP file > server' on port 47195. > 16/05/17 16:17:50 INFO spark.SparkEnv: Registering OutputCommitCoordinator > 16/05/17 16:17:50 INFO ui.JettyUtils: Adding filter: > org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter > 16/05/17 16:17:55 INFO server.Server: jetty-8.y.z-SNAPSHOT > 16/05/17 16:17:55 INFO server.AbstractConnector: Started > SelectChannelConnector@0.0.0.0:59320 > 16/05/17 16:17:55 INFO util.Utils: Successfully started service 'SparkUI' on > port 59320. > 16/05/17 16:17:55 INFO ui.SparkUI: Started SparkUI at > http://172.16.28.195:59320 > 16/05/17 16:17:55 INFO cluster.YarnClusterScheduler: Created > YarnClusterScheduler > 16/05/17 16:17:55 WARN metrics.MetricsSystem: Using default name DAGScheduler > for source because spark.app.id is not set. > 16/05/17 16:17:55 INFO util.Utils: Successfully started service > 'org.apache.spark.network.netty.NettyBlockTransferService' on port 57488. > 16/05/17 16:17:55 INFO netty.NettyBlockTransferService: Server created on > 57488 > 16/05/17 16:17:55 INFO storage.BlockManagerMaster: Trying to register > BlockManager > 16/05/17 16:17:55 INFO storage.BlockManagerMasterEndpoint: Registering block > manager 172.16.28.195:57488 with 1966.1 MB RAM, BlockManagerId(driver, > 172.16.28.195, 57488) > 16/05/17 16:17:55 INFO storage.BlockManagerMaster: Registered BlockManager > 16/05/17 16:17:56 INFO cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: > ApplicationMaster registered as > AkkaRpcEndpointRef(Actor[akka://sparkDriver/user/YarnAM#-174037885]) > 16/05/17 16:17:56 INFO client.RMProxy: Connecting to ResourceManager at > namenode/172.16.28.190:8030 > 16/05/17 16:17:56 INFO yarn.YarnRMClient: Registering the ApplicationMaster > 16/05/17 16:17:56 INFO yarn.YarnAllocator: Will request 2 executor > containers, each with 1 cores and 1408 MB memory including 384 MB overhead > 16/05/17 16:17:56 INFO yarn.YarnAllocator: Container request (host: Any, > capability: <memory:1408, vCores:1>) > 16/05/17 16:17:56 INFO yarn.YarnAllocator: Container request (host: Any, > capability: <memory:1408, vCores:1>) > 16/05/17 16:17:56 INFO yarn.ApplicationMaster: Started progress reporter > thread with (heartbeat : 3000, initial allocation : 200) intervals > 16/05/17 16:17:56 INFO impl.AMRMClientImpl: Received new token for : > node4:58299 > 16/05/17 16:17:56 INFO yarn.YarnAllocator: Launching container > container_1463479181441_0003_02_000002 for on host node4 > 16/05/17 16:17:56 INFO yarn.YarnAllocator: Launching ExecutorRunnable. > driverUrl: > akka.tcp://sparkDriver@172.16.28.195:53411/user/CoarseGrainedScheduler, > executorHostname: node4 > 16/05/17 16:17:56 INFO yarn.ExecutorRunnable: Starting Executor Container > 16/05/17 16:17:56 INFO yarn.YarnAllocator: Received 1 containers from YARN, > launching executors on 1 of them. > 16/05/17 16:17:56 INFO impl.ContainerManagementProtocolProxy: > yarn.client.max-cached-nodemanagers-proxies : 0 > 16/05/17 16:17:56 INFO yarn.ExecutorRunnable: Setting up > ContainerLaunchContext > 16/05/17 16:17:56 INFO yarn.ExecutorRunnable: Preparing Local resources > 16/05/17 16:17:56 INFO yarn.ExecutorRunnable: Prepared Local resources > Map(__app__.jar -> resource { scheme: "hdfs" host: "namenode" port: 54310 > file: > "/user/hadoop/.sparkStaging/application_1463479181441_0003/SparkTwittterStreamingJob-0.0.1-SNAPSHOT-jar-with-dependencies.jar" > } size: 216515519 timestamp: 1463481955892 type: FILE visibility: PRIVATE, > __spark__.jar -> resource { scheme: "hdfs" host: "namenode" port: 54310 file: > "/user/hadoop/.sparkStaging/application_1463479181441_0003/spark-assembly-1.5.2-hadoop2.6.0.jar" > } size: 183993445 timestamp: 1463481933738 type: FILE visibility: PRIVATE) > 16/05/17 16:17:56 INFO yarn.ExecutorRunnable: > =============================================================================== > YARN executor launch context: > env: > CLASSPATH -> > {{PWD}}<CPS>{{PWD}}/__spark__.jar<CPS>$HADOOP_CONF_DIR<CPS>$HADOOP_COMMON_HOME/share/hadoop/common/*<CPS>$HADOOP_COMMON_HOME/share/hadoop/common/lib/*<CPS>$HADOOP_HDFS_HOME/share/hadoop/hdfs/*<CPS>$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*<CPS>$HADOOP_YARN_HOME/share/hadoop/yarn/*<CPS>$HADOOP_YARN_HOME/share/hadoop/yarn/lib/*<CPS>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*<CPS>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/* > SPARK_LOG_URL_STDERR -> > http://node4:8042/node/containerlogs/container_1463479181441_0003_02_000002/hadoop/stderr?start=-4096 > SPARK_YARN_STAGING_DIR -> .sparkStaging/application_1463479181441_0003 > SPARK_YARN_CACHE_FILES_FILE_SIZES -> 183993445,216515519 > SPARK_USER -> hadoop > SPARK_YARN_CACHE_FILES_VISIBILITIES -> PRIVATE,PRIVATE > SPARK_YARN_MODE -> true > SPARK_JAVA_OPTS -> -Dspark.driver.port=53411 > SPARK_YARN_CACHE_FILES_TIME_STAMPS -> 1463481933738,1463481955892 > SPARK_LOG_URL_STDOUT -> > http://node4:8042/node/containerlogs/container_1463479181441_0003_02_000002/hadoop/stdout?start=-4096 > SPARK_YARN_CACHE_FILES -> > hdfs://namenode:54310/user/hadoop/.sparkStaging/application_1463479181441_0003/spark-assembly-1.5.2-hadoop2.6.0.jar#__spark__.jar,hdfs://namenode:54310/user/hadoop/.sparkStaging/application_1463479181441_0003/SparkTwittterStreamingJob-0.0.1-SNAPSHOT-jar-with-dependencies.jar#__app__.jar > > command: > {{JAVA_HOME}}/bin/java -server -XX:OnOutOfMemoryError='kill %p' -Xms1024m > -Xmx1024m '-Dspark.driver.port=53411' -Djava.io.tmpdir={{PWD}}/tmp > '-Dspark.ui.port=0' '-Dspark.driver.port=53411' > -Dspark.yarn.app.container.log.dir=<LOG_DIR> > org.apache.spark.executor.CoarseGrainedExecutorBackend --driver-url > akka.tcp://sparkDriver@172.16.28.195:53411/user/CoarseGrainedScheduler > --executor-id 1 --hostname node4 --cores 1 --app-id > application_1463479181441_0003 --user-class-path file:$PWD/__app__.jar 1> > <LOG_DIR>/stdout 2> <LOG_DIR>/stderr > =============================================================================== > > 16/05/17 16:17:56 INFO impl.ContainerManagementProtocolProxy: Opening proxy : > node4:58299 > 16/05/17 16:17:56 INFO impl.AMRMClientImpl: Received new token for : > node2:52751 > 16/05/17 16:17:56 INFO yarn.YarnAllocator: Launching container > container_1463479181441_0003_02_000003 for on host node2 > 16/05/17 16:17:56 INFO yarn.YarnAllocator: Launching ExecutorRunnable. > driverUrl: > akka.tcp://sparkDriver@172.16.28.195:53411/user/CoarseGrainedScheduler, > executorHostname: node2 > 16/05/17 16:17:56 INFO yarn.ExecutorRunnable: Starting Executor Container > 16/05/17 16:17:56 INFO yarn.YarnAllocator: Received 1 containers from YARN, > launching executors on 1 of them. > 16/05/17 16:17:56 INFO impl.ContainerManagementProtocolProxy: > yarn.client.max-cached-nodemanagers-proxies : 0 > 16/05/17 16:17:56 INFO yarn.ExecutorRunnable: Setting up > ContainerLaunchContext > 16/05/17 16:17:56 INFO yarn.ExecutorRunnable: Preparing Local resources > 16/05/17 16:17:56 INFO yarn.ExecutorRunnable: Prepared Local resources > Map(__app__.jar -> resource { scheme: "hdfs" host: "namenode" port: 54310 > file: > "/user/hadoop/.sparkStaging/application_1463479181441_0003/SparkTwittterStreamingJob-0.0.1-SNAPSHOT-jar-with-dependencies.jar" > } size: 216515519 timestamp: 1463481955892 type: FILE visibility: PRIVATE, > __spark__.jar -> resource { scheme: "hdfs" host: "namenode" port: 54310 file: > "/user/hadoop/.sparkStaging/application_1463479181441_0003/spark-assembly-1.5.2-hadoop2.6.0.jar" > } size: 183993445 timestamp: 1463481933738 type: FILE visibility: PRIVATE) > 16/05/17 16:17:56 INFO yarn.ExecutorRunnable: > =============================================================================== > YARN executor launch context: > env: > CLASSPATH -> > {{PWD}}<CPS>{{PWD}}/__spark__.jar<CPS>$HADOOP_CONF_DIR<CPS>$HADOOP_COMMON_HOME/share/hadoop/common/*<CPS>$HADOOP_COMMON_HOME/share/hadoop/common/lib/*<CPS>$HADOOP_HDFS_HOME/share/hadoop/hdfs/*<CPS>$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*<CPS>$HADOOP_YARN_HOME/share/hadoop/yarn/*<CPS>$HADOOP_YARN_HOME/share/hadoop/yarn/lib/*<CPS>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*<CPS>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/* > SPARK_LOG_URL_STDERR -> > http://node2:8042/node/containerlogs/container_1463479181441_0003_02_000003/hadoop/stderr?start=-4096 > SPARK_YARN_STAGING_DIR -> .sparkStaging/application_1463479181441_0003 > SPARK_YARN_CACHE_FILES_FILE_SIZES -> 183993445,216515519 > SPARK_USER -> hadoop > SPARK_YARN_CACHE_FILES_VISIBILITIES -> PRIVATE,PRIVATE > SPARK_YARN_MODE -> true > SPARK_JAVA_OPTS -> -Dspark.driver.port=53411 > SPARK_YARN_CACHE_FILES_TIME_STAMPS -> 1463481933738,1463481955892 > SPARK_LOG_URL_STDOUT -> > http://node2:8042/node/containerlogs/container_1463479181441_0003_02_000003/hadoop/stdout?start=-4096 > SPARK_YARN_CACHE_FILES -> > hdfs://namenode:54310/user/hadoop/.sparkStaging/application_1463479181441_0003/spark-assembly-1.5.2-hadoop2.6.0.jar#__spark__.jar,hdfs://namenode:54310/user/hadoop/.sparkStaging/application_1463479181441_0003/SparkTwittterStreamingJob-0.0.1-SNAPSHOT-jar-with-dependencies.jar#__app__.jar > > command: > {{JAVA_HOME}}/bin/java -server -XX:OnOutOfMemoryError='kill %p' -Xms1024m > -Xmx1024m '-Dspark.driver.port=53411' -Djava.io.tmpdir={{PWD}}/tmp > '-Dspark.ui.port=0' '-Dspark.driver.port=53411' > -Dspark.yarn.app.container.log.dir=<LOG_DIR> > org.apache.spark.executor.CoarseGrainedExecutorBackend --driver-url > akka.tcp://sparkDriver@172.16.28.195:53411/user/CoarseGrainedScheduler > --executor-id 2 --hostname node2 --cores 1 --app-id > application_1463479181441_0003 --user-class-path file:$PWD/__app__.jar 1> > <LOG_DIR>/stdout 2> <LOG_DIR>/stderr > =============================================================================== > > 16/05/17 16:17:56 INFO impl.ContainerManagementProtocolProxy: Opening proxy : > node2:52751 > 16/05/17 16:17:59 INFO yarn.ApplicationMaster$AMEndpoint: Driver terminated > or disconnected! Shutting down. node4:39430 > 16/05/17 16:17:59 INFO cluster.YarnClusterSchedulerBackend: Registered > executor: > AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@node4:50089/user/Executor#1750526367]) > with ID 1 > 16/05/17 16:17:59 INFO storage.BlockManagerMasterEndpoint: Registering block > manager node4:47743 with 530.0 MB RAM, BlockManagerId(1, node4, 47743) > 16/05/17 16:17:59 INFO yarn.YarnAllocator: Received 1 containers from YARN, > launching executors on 0 of them. > 16/05/17 16:17:59 INFO yarn.YarnAllocator: Completed container > container_1463479181441_0003_02_000003 (state: COMPLETE, exit status: -1000) > 16/05/17 16:17:59 INFO yarn.YarnAllocator: Container marked as failed: > container_1463479181441_0003_02_000003. Exit status: -1000. Diagnostics: File > does not exist: > hdfs://namenode:54310/user/hadoop/.sparkStaging/application_1463479181441_0003/SparkTwittterStreamingJob-0.0.1-SNAPSHOT-jar-with-dependencies.jar > java.io.FileNotFoundException: File does not exist: > hdfs://namenode:54310/user/hadoop/.sparkStaging/application_1463479181441_0003/SparkTwittterStreamingJob-0.0.1-SNAPSHOT-jar-with-dependencies.jar > at > org.apache.hadoop.hdfs.DistributedFileSystem$18.doCall(DistributedFileSystem.java:1122) > at > org.apache.hadoop.hdfs.DistributedFileSystem$18.doCall(DistributedFileSystem.java:1114) > at > org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81) > at > org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1114) > at org.apache.hadoop.yarn.util.FSDownload.copy(FSDownload.java:251) > at org.apache.hadoop.yarn.util.FSDownload.access$000(FSDownload.java:61) > at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:359) > at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:357) > at java.security.AccessController.doPrivileged(Native Method) > at javax.security.auth.Subject.doAs(Subject.java:422) > at > org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628) > at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:356) > at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:60) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > > > 16/05/17 16:17:59 INFO cluster.YarnClusterSchedulerBackend: Asked to remove > non-existent executor 2 > 16/05/17 16:18:02 INFO yarn.YarnAllocator: Will request 1 executor > containers, each with 1 cores and 1408 MB memory including 384 MB overhead > 16/05/17 16:18:02 INFO yarn.YarnAllocator: Container request (host: Any, > capability: <memory:1408, vCores:1>) > 16/05/17 16:18:03 INFO yarn.YarnAllocator: Launching container > container_1463479181441_0003_02_000005 for on host node4 > 16/05/17 16:18:03 INFO yarn.YarnAllocator: Launching ExecutorRunnable. > driverUrl: > akka.tcp://sparkDriver@172.16.28.195:53411/user/CoarseGrainedScheduler, > executorHostname: node4 > 16/05/17 16:18:03 INFO yarn.YarnAllocator: Received 1 containers from YARN, > launching executors on 1 of them. > 16/05/17 16:18:03 INFO yarn.ExecutorRunnable: Starting Executor Container > 16/05/17 16:18:03 INFO impl.ContainerManagementProtocolProxy: > yarn.client.max-cached-nodemanagers-proxies : 0 > 16/05/17 16:18:03 INFO yarn.ExecutorRunnable: Setting up > ContainerLaunchContext > 16/05/17 16:18:03 INFO yarn.ExecutorRunnable: Preparing Local resources > 16/05/17 16:18:03 INFO yarn.ExecutorRunnable: Prepared Local resources > Map(__app__.jar -> resource { scheme: "hdfs" host: "namenode" port: 54310 > file: > "/user/hadoop/.sparkStaging/application_1463479181441_0003/SparkTwittterStreamingJob-0.0.1-SNAPSHOT-jar-with-dependencies.jar" > } size: 216515519 timestamp: 1463481955892 type: FILE visibility: PRIVATE, > __spark__.jar -> resource { scheme: "hdfs" host: "namenode" port: 54310 file: > "/user/hadoop/.sparkStaging/application_1463479181441_0003/spark-assembly-1.5.2-hadoop2.6.0.jar" > } size: 183993445 timestamp: 1463481933738 type: FILE visibility: PRIVATE) > 16/05/17 16:18:03 INFO yarn.ExecutorRunnable: > =============================================================================== > YARN executor launch context: > env: > CLASSPATH -> > {{PWD}}<CPS>{{PWD}}/__spark__.jar<CPS>$HADOOP_CONF_DIR<CPS>$HADOOP_COMMON_HOME/share/hadoop/common/*<CPS>$HADOOP_COMMON_HOME/share/hadoop/common/lib/*<CPS>$HADOOP_HDFS_HOME/share/hadoop/hdfs/*<CPS>$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*<CPS>$HADOOP_YARN_HOME/share/hadoop/yarn/*<CPS>$HADOOP_YARN_HOME/share/hadoop/yarn/lib/*<CPS>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*<CPS>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/* > SPARK_LOG_URL_STDERR -> > http://node4:8042/node/containerlogs/container_1463479181441_0003_02_000005/hadoop/stderr?start=-4096 > SPARK_YARN_STAGING_DIR -> .sparkStaging/application_1463479181441_0003 > SPARK_YARN_CACHE_FILES_FILE_SIZES -> 183993445,216515519 > SPARK_USER -> hadoop > SPARK_YARN_CACHE_FILES_VISIBILITIES -> PRIVATE,PRIVATE > SPARK_YARN_MODE -> true > SPARK_JAVA_OPTS -> -Dspark.driver.port=53411 > SPARK_YARN_CACHE_FILES_TIME_STAMPS -> 1463481933738,1463481955892 > SPARK_LOG_URL_STDOUT -> > http://node4:8042/node/containerlogs/container_1463479181441_0003_02_000005/hadoop/stdout?start=-4096 > SPARK_YARN_CACHE_FILES -> > hdfs://namenode:54310/user/hadoop/.sparkStaging/application_1463479181441_0003/spark-assembly-1.5.2-hadoop2.6.0.jar#__spark__.jar,hdfs://namenode:54310/user/hadoop/.sparkStaging/application_1463479181441_0003/SparkTwittterStreamingJob-0.0.1-SNAPSHOT-jar-with-dependencies.jar#__app__.jar > > command: > {{JAVA_HOME}}/bin/java -server -XX:OnOutOfMemoryError='kill %p' -Xms1024m > -Xmx1024m '-Dspark.driver.port=53411' -Djava.io.tmpdir={{PWD}}/tmp > '-Dspark.ui.port=0' '-Dspark.driver.port=53411' > -Dspark.yarn.app.container.log.dir=<LOG_DIR> > org.apache.spark.executor.CoarseGrainedExecutorBackend --driver-url > akka.tcp://sparkDriver@172.16.28.195:53411/user/CoarseGrainedScheduler > --executor-id 3 --hostname node4 --cores 1 --app-id > application_1463479181441_0003 --user-class-path file:$PWD/__app__.jar 1> > <LOG_DIR>/stdout 2> <LOG_DIR>/stderr > =============================================================================== > > 16/05/17 16:18:03 INFO impl.ContainerManagementProtocolProxy: Opening proxy : > node4:58299 > 16/05/17 16:18:06 INFO yarn.ApplicationMaster$AMEndpoint: Driver terminated > or disconnected! Shutting down. node4:35884 > 16/05/17 16:18:06 INFO cluster.YarnClusterSchedulerBackend: Registered > executor: > AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@node4:46484/user/Executor#-348284167]) > with ID 3 > 16/05/17 16:18:06 INFO cluster.YarnClusterSchedulerBackend: SchedulerBackend > is ready for scheduling beginning after reached minRegisteredResourcesRatio: > 0.8 > 16/05/17 16:18:06 INFO cluster.YarnClusterScheduler: > YarnClusterScheduler.postStartHook done > 16/05/17 16:18:06 INFO storage.BlockManagerMasterEndpoint: Registering block > manager node4:58845 with 530.0 MB RAM, BlockManagerId(3, node4, 58845) > 16/05/17 16:18:06 INFO spark.SparkTweetStreamingHDFSLoad: dayOfTheWeek > .........[Ljava.lang.String;@42c6ef6d > 16/05/17 16:18:07 INFO rate.PIDRateEstimator: Created PIDRateEstimator with > proportional = 1.0, integral = 0.2, derivative = 0.0, min rate = 100.0 > 16/05/17 16:18:07 INFO spark.SparkTweetStreamingHDFSLoad: Terminate > DAte............Tue May 17 00:00:00 IST 2016 > 16/05/17 16:18:07 INFO spark.SparkTweetStreamingHDFSLoad: > outputURI--------------hdfs://namenode:54310/spark/TweetData/twitterRawDataTest > 16/05/17 16:18:07 INFO spark.SparkTweetStreamingHDFSLoad: > outputURI--------------hdfs://namenode:54310/spark/TweetData/twitterSeggDataTest > 16/05/17 16:18:07 INFO spark.SparkContext: Starting job: start at > SparkTweetStreamingHDFSLoad.java:1743 > 16/05/17 16:18:07 INFO scheduler.DAGScheduler: Registering RDD 1 (start at > SparkTweetStreamingHDFSLoad.java:1743) > 16/05/17 16:18:07 INFO scheduler.DAGScheduler: Got job 0 (start at > SparkTweetStreamingHDFSLoad.java:1743) with 20 output partitions > 16/05/17 16:18:07 INFO scheduler.DAGScheduler: Final stage: ResultStage > 1(start at SparkTweetStreamingHDFSLoad.java:1743) > 16/05/17 16:18:07 INFO scheduler.DAGScheduler: Parents of final stage: > List(ShuffleMapStage 0) > 16/05/17 16:18:07 INFO scheduler.DAGScheduler: Missing parents: > List(ShuffleMapStage 0) > 16/05/17 16:18:07 INFO scheduler.DAGScheduler: Submitting ShuffleMapStage 0 > (MapPartitionsRDD[1] at start at SparkTweetStreamingHDFSLoad.java:1743), > which has no missing parents > 16/05/17 16:18:08 INFO storage.MemoryStore: ensureFreeSpace(2736) called with > curMem=0, maxMem=2061647216 > 16/05/17 16:18:08 INFO storage.MemoryStore: Block broadcast_0 stored as > values in memory (estimated size 2.7 KB, free 1966.1 MB) > 16/05/17 16:18:08 INFO storage.MemoryStore: ensureFreeSpace(1655) called with > curMem=2736, maxMem=2061647216 > 16/05/17 16:18:08 INFO storage.MemoryStore: Block broadcast_0_piece0 stored > as bytes in memory (estimated size 1655.0 B, free 1966.1 MB) > 16/05/17 16:18:08 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in > memory on 172.16.28.195:57488 (size: 1655.0 B, free: 1966.1 MB) > 16/05/17 16:18:08 INFO spark.SparkContext: Created broadcast 0 from broadcast > at DAGScheduler.scala:861 > 16/05/17 16:18:08 INFO scheduler.DAGScheduler: Submitting 50 missing tasks > from ShuffleMapStage 0 (MapPartitionsRDD[1] at start at > SparkTweetStreamingHDFSLoad.java:1743) > 16/05/17 16:18:08 INFO cluster.YarnClusterScheduler: Adding task set 0.0 with > 50 tasks > 16/05/17 16:18:08 INFO scheduler.TaskSetManager: Starting task 0.0 in stage > 0.0 (TID 0, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:08 INFO scheduler.TaskSetManager: Starting task 1.0 in stage > 0.0 (TID 1, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:12 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in > memory on node4:47743 (size: 1655.0 B, free: 530.0 MB) > 16/05/17 16:18:12 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in > memory on node4:58845 (size: 1655.0 B, free: 530.0 MB) > 16/05/17 16:18:12 INFO scheduler.TaskSetManager: Starting task 2.0 in stage > 0.0 (TID 2, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:12 INFO scheduler.TaskSetManager: Starting task 3.0 in stage > 0.0 (TID 3, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:12 INFO scheduler.TaskSetManager: Finished task 1.0 in stage > 0.0 (TID 1) in 4243 ms on node4 (1/50) > 16/05/17 16:18:12 INFO scheduler.TaskSetManager: Finished task 0.0 in stage > 0.0 (TID 0) in 4296 ms on node4 (2/50) > 16/05/17 16:18:12 INFO scheduler.TaskSetManager: Starting task 4.0 in stage > 0.0 (TID 4, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:12 INFO scheduler.TaskSetManager: Starting task 5.0 in stage > 0.0 (TID 5, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:12 INFO scheduler.TaskSetManager: Finished task 2.0 in stage > 0.0 (TID 2) in 149 ms on node4 (3/50) > 16/05/17 16:18:12 INFO scheduler.TaskSetManager: Finished task 3.0 in stage > 0.0 (TID 3) in 143 ms on node4 (4/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 6.0 in stage > 0.0 (TID 6, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 7.0 in stage > 0.0 (TID 7, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 4.0 in stage > 0.0 (TID 4) in 109 ms on node4 (5/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 5.0 in stage > 0.0 (TID 5) in 88 ms on node4 (6/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 8.0 in stage > 0.0 (TID 8, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 6.0 in stage > 0.0 (TID 6) in 74 ms on node4 (7/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 7.0 in stage > 0.0 (TID 7) in 75 ms on node4 (8/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 9.0 in stage > 0.0 (TID 9, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 8.0 in stage > 0.0 (TID 8) in 83 ms on node4 (9/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 10.0 in stage > 0.0 (TID 10, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 9.0 in stage > 0.0 (TID 9) in 94 ms on node4 (10/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 11.0 in stage > 0.0 (TID 11, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 12.0 in stage > 0.0 (TID 12, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 10.0 in stage > 0.0 (TID 10) in 70 ms on node4 (11/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 13.0 in stage > 0.0 (TID 13, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 11.0 in stage > 0.0 (TID 11) in 83 ms on node4 (12/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 14.0 in stage > 0.0 (TID 14, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 15.0 in stage > 0.0 (TID 15, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 14.0 in stage > 0.0 (TID 14) in 64 ms on node4 (13/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 16.0 in stage > 0.0 (TID 16, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 13.0 in stage > 0.0 (TID 13) in 99 ms on node4 (14/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 12.0 in stage > 0.0 (TID 12) in 169 ms on node4 (15/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 17.0 in stage > 0.0 (TID 17, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 15.0 in stage > 0.0 (TID 15) in 79 ms on node4 (16/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 18.0 in stage > 0.0 (TID 18, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 16.0 in stage > 0.0 (TID 16) in 112 ms on node4 (17/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 19.0 in stage > 0.0 (TID 19, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 17.0 in stage > 0.0 (TID 17) in 87 ms on node4 (18/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 20.0 in stage > 0.0 (TID 20, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 18.0 in stage > 0.0 (TID 18) in 73 ms on node4 (19/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 21.0 in stage > 0.0 (TID 21, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 19.0 in stage > 0.0 (TID 19) in 89 ms on node4 (20/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 22.0 in stage > 0.0 (TID 22, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 20.0 in stage > 0.0 (TID 20) in 113 ms on node4 (21/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 21.0 in stage > 0.0 (TID 21) in 90 ms on node4 (22/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 23.0 in stage > 0.0 (TID 23, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 24.0 in stage > 0.0 (TID 24, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 22.0 in stage > 0.0 (TID 22) in 85 ms on node4 (23/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 23.0 in stage > 0.0 (TID 23) in 71 ms on node4 (24/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 25.0 in stage > 0.0 (TID 25, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 26.0 in stage > 0.0 (TID 26, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 24.0 in stage > 0.0 (TID 24) in 79 ms on node4 (25/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 27.0 in stage > 0.0 (TID 27, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 25.0 in stage > 0.0 (TID 25) in 77 ms on node4 (26/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 28.0 in stage > 0.0 (TID 28, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 26.0 in stage > 0.0 (TID 26) in 84 ms on node4 (27/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 29.0 in stage > 0.0 (TID 29, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 27.0 in stage > 0.0 (TID 27) in 81 ms on node4 (28/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 30.0 in stage > 0.0 (TID 30, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 28.0 in stage > 0.0 (TID 28) in 70 ms on node4 (29/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 31.0 in stage > 0.0 (TID 31, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 29.0 in stage > 0.0 (TID 29) in 93 ms on node4 (30/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Finished task 30.0 in stage > 0.0 (TID 30) in 74 ms on node4 (31/50) > 16/05/17 16:18:13 INFO scheduler.TaskSetManager: Starting task 32.0 in stage > 0.0 (TID 32, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 33.0 in stage > 0.0 (TID 33, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 32.0 in stage > 0.0 (TID 32) in 71 ms on node4 (32/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 31.0 in stage > 0.0 (TID 31) in 98 ms on node4 (33/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 34.0 in stage > 0.0 (TID 34, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 35.0 in stage > 0.0 (TID 35, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 33.0 in stage > 0.0 (TID 33) in 85 ms on node4 (34/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 36.0 in stage > 0.0 (TID 36, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 34.0 in stage > 0.0 (TID 34) in 93 ms on node4 (35/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 37.0 in stage > 0.0 (TID 37, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 35.0 in stage > 0.0 (TID 35) in 503 ms on node4 (36/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 38.0 in stage > 0.0 (TID 38, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 36.0 in stage > 0.0 (TID 36) in 496 ms on node4 (37/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 39.0 in stage > 0.0 (TID 39, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 37.0 in stage > 0.0 (TID 37) in 86 ms on node4 (38/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 40.0 in stage > 0.0 (TID 40, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 38.0 in stage > 0.0 (TID 38) in 68 ms on node4 (39/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 41.0 in stage > 0.0 (TID 41, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 40.0 in stage > 0.0 (TID 40) in 62 ms on node4 (40/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 39.0 in stage > 0.0 (TID 39) in 87 ms on node4 (41/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 42.0 in stage > 0.0 (TID 42, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 43.0 in stage > 0.0 (TID 43, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 41.0 in stage > 0.0 (TID 41) in 95 ms on node4 (42/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 44.0 in stage > 0.0 (TID 44, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 42.0 in stage > 0.0 (TID 42) in 110 ms on node4 (43/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 45.0 in stage > 0.0 (TID 45, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 43.0 in stage > 0.0 (TID 43) in 94 ms on node4 (44/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 46.0 in stage > 0.0 (TID 46, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 44.0 in stage > 0.0 (TID 44) in 95 ms on node4 (45/50) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Starting task 47.0 in stage > 0.0 (TID 47, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:14 INFO scheduler.TaskSetManager: Finished task 45.0 in stage > 0.0 (TID 45) in 90 ms on node4 (46/50) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 48.0 in stage > 0.0 (TID 48, node4, PROCESS_LOCAL, 1962 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 46.0 in stage > 0.0 (TID 46) in 103 ms on node4 (47/50) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 49.0 in stage > 0.0 (TID 49, node4, PROCESS_LOCAL, 1929 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 47.0 in stage > 0.0 (TID 47) in 93 ms on node4 (48/50) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 48.0 in stage > 0.0 (TID 48) in 127 ms on node4 (49/50) > 16/05/17 16:18:15 INFO scheduler.DAGScheduler: ShuffleMapStage 0 (start at > SparkTweetStreamingHDFSLoad.java:1743) finished in 6.553 s > 16/05/17 16:18:15 INFO scheduler.DAGScheduler: looking for newly runnable > stages > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 49.0 in stage > 0.0 (TID 49) in 94 ms on node4 (50/50) > 16/05/17 16:18:15 INFO scheduler.DAGScheduler: running: Set() > 16/05/17 16:18:15 INFO scheduler.DAGScheduler: waiting: Set(ResultStage 1) > 16/05/17 16:18:15 INFO scheduler.DAGScheduler: failed: Set() > 16/05/17 16:18:15 INFO cluster.YarnClusterScheduler: Removed TaskSet 0.0, > whose tasks have all completed, from pool > 16/05/17 16:18:15 INFO scheduler.DAGScheduler: Missing parents for > ResultStage 1: List() > 16/05/17 16:18:15 INFO scheduler.DAGScheduler: Submitting ResultStage 1 > (ShuffledRDD[2] at start at SparkTweetStreamingHDFSLoad.java:1743), which is > now runnable > 16/05/17 16:18:15 INFO storage.MemoryStore: ensureFreeSpace(2344) called with > curMem=4391, maxMem=2061647216 > 16/05/17 16:18:15 INFO storage.MemoryStore: Block broadcast_1 stored as > values in memory (estimated size 2.3 KB, free 1966.1 MB) > 16/05/17 16:18:15 INFO storage.MemoryStore: ensureFreeSpace(1400) called with > curMem=6735, maxMem=2061647216 > 16/05/17 16:18:15 INFO storage.MemoryStore: Block broadcast_1_piece0 stored > as bytes in memory (estimated size 1400.0 B, free 1966.1 MB) > 16/05/17 16:18:15 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in > memory on 172.16.28.195:57488 (size: 1400.0 B, free: 1966.1 MB) > 16/05/17 16:18:15 INFO spark.SparkContext: Created broadcast 1 from broadcast > at DAGScheduler.scala:861 > 16/05/17 16:18:15 INFO scheduler.DAGScheduler: Submitting 20 missing tasks > from ResultStage 1 (ShuffledRDD[2] at start at > SparkTweetStreamingHDFSLoad.java:1743) > 16/05/17 16:18:15 INFO cluster.YarnClusterScheduler: Adding task set 1.0 with > 20 tasks > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 0.0 in stage > 1.0 (TID 50, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 1.0 in stage > 1.0 (TID 51, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in > memory on node4:58845 (size: 1400.0 B, free: 530.0 MB) > 16/05/17 16:18:15 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in > memory on node4:47743 (size: 1400.0 B, free: 530.0 MB) > 16/05/17 16:18:15 INFO spark.MapOutputTrackerMasterEndpoint: Asked to send > map output locations for shuffle 0 to node4:50089 > 16/05/17 16:18:15 INFO spark.MapOutputTrackerMaster: Size of output statuses > for shuffle 0 is 295 bytes > 16/05/17 16:18:15 INFO spark.MapOutputTrackerMasterEndpoint: Asked to send > map output locations for shuffle 0 to node4:46484 > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 2.0 in stage > 1.0 (TID 52, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 3.0 in stage > 1.0 (TID 53, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 1.0 in stage > 1.0 (TID 51) in 454 ms on node4 (1/20) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 0.0 in stage > 1.0 (TID 50) in 457 ms on node4 (2/20) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 4.0 in stage > 1.0 (TID 54, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 2.0 in stage > 1.0 (TID 52) in 69 ms on node4 (3/20) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 5.0 in stage > 1.0 (TID 55, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 3.0 in stage > 1.0 (TID 53) in 86 ms on node4 (4/20) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 6.0 in stage > 1.0 (TID 56, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 4.0 in stage > 1.0 (TID 54) in 66 ms on node4 (5/20) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 7.0 in stage > 1.0 (TID 57, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 5.0 in stage > 1.0 (TID 55) in 55 ms on node4 (6/20) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 8.0 in stage > 1.0 (TID 58, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 6.0 in stage > 1.0 (TID 56) in 77 ms on node4 (7/20) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 9.0 in stage > 1.0 (TID 59, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 7.0 in stage > 1.0 (TID 57) in 87 ms on node4 (8/20) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 10.0 in stage > 1.0 (TID 60, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 8.0 in stage > 1.0 (TID 58) in 49 ms on node4 (9/20) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Starting task 11.0 in stage > 1.0 (TID 61, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:15 INFO scheduler.TaskSetManager: Finished task 9.0 in stage > 1.0 (TID 59) in 58 ms on node4 (10/20) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Starting task 12.0 in stage > 1.0 (TID 62, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Finished task 11.0 in stage > 1.0 (TID 61) in 79 ms on node4 (11/20) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Starting task 13.0 in stage > 1.0 (TID 63, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Finished task 10.0 in stage > 1.0 (TID 60) in 107 ms on node4 (12/20) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Starting task 14.0 in stage > 1.0 (TID 64, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Finished task 12.0 in stage > 1.0 (TID 62) in 49 ms on node4 (13/20) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Starting task 15.0 in stage > 1.0 (TID 65, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Finished task 13.0 in stage > 1.0 (TID 63) in 64 ms on node4 (14/20) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Starting task 16.0 in stage > 1.0 (TID 66, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Starting task 17.0 in stage > 1.0 (TID 67, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Finished task 15.0 in stage > 1.0 (TID 65) in 51 ms on node4 (15/20) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Finished task 14.0 in stage > 1.0 (TID 64) in 86 ms on node4 (16/20) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Starting task 18.0 in stage > 1.0 (TID 68, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Finished task 16.0 in stage > 1.0 (TID 66) in 52 ms on node4 (17/20) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Starting task 19.0 in stage > 1.0 (TID 69, node4, PROCESS_LOCAL, 1901 bytes) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Finished task 17.0 in stage > 1.0 (TID 67) in 53 ms on node4 (18/20) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Finished task 19.0 in stage > 1.0 (TID 69) in 40 ms on node4 (19/20) > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Finished task 18.0 in stage > 1.0 (TID 68) in 67 ms on node4 (20/20) > 16/05/17 16:18:16 INFO cluster.YarnClusterScheduler: Removed TaskSet 1.0, > whose tasks have all completed, from pool > 16/05/17 16:18:16 INFO scheduler.DAGScheduler: ResultStage 1 (start at > SparkTweetStreamingHDFSLoad.java:1743) finished in 1.010 s > 16/05/17 16:18:16 INFO scheduler.DAGScheduler: Job 0 finished: start at > SparkTweetStreamingHDFSLoad.java:1743, took 8.825568 s > 16/05/17 16:18:16 INFO scheduler.ReceiverTracker: Starting 1 receivers > 16/05/17 16:18:16 INFO scheduler.ReceiverTracker: ReceiverTracker started > 16/05/17 16:18:16 INFO dstream.ForEachDStream: metadataCleanupDelay = -1 > 16/05/17 16:18:16 INFO dstream.FilteredDStream: metadataCleanupDelay = -1 > 16/05/17 16:18:16 INFO dstream.MappedDStream: metadataCleanupDelay = -1 > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: metadataCleanupDelay = -1 > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: Slide time = 60000 ms > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: Storage level = > StorageLevel(false, false, false, false, 1) > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: Checkpoint interval = null > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: Remember duration = 60000 > ms > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: Initialized and validated > org.apache.spark.streaming.twitter.TwitterInputDStream@55861179 > 16/05/17 16:18:16 INFO dstream.MappedDStream: Slide time = 60000 ms > 16/05/17 16:18:16 INFO dstream.MappedDStream: Storage level = > StorageLevel(false, false, false, false, 1) > 16/05/17 16:18:16 INFO dstream.MappedDStream: Checkpoint interval = null > 16/05/17 16:18:16 INFO dstream.MappedDStream: Remember duration = 60000 ms > 16/05/17 16:18:16 INFO dstream.MappedDStream: Initialized and validated > org.apache.spark.streaming.dstream.MappedDStream@6e42c819 > 16/05/17 16:18:16 INFO dstream.FilteredDStream: Slide time = 60000 ms > 16/05/17 16:18:16 INFO dstream.FilteredDStream: Storage level = > StorageLevel(false, false, false, false, 1) > 16/05/17 16:18:16 INFO dstream.FilteredDStream: Checkpoint interval = null > 16/05/17 16:18:16 INFO dstream.FilteredDStream: Remember duration = 60000 ms > 16/05/17 16:18:16 INFO dstream.FilteredDStream: Initialized and validated > org.apache.spark.streaming.dstream.FilteredDStream@479cccce > 16/05/17 16:18:16 INFO dstream.ForEachDStream: Slide time = 60000 ms > 16/05/17 16:18:16 INFO dstream.ForEachDStream: Storage level = > StorageLevel(false, false, false, false, 1) > 16/05/17 16:18:16 INFO dstream.ForEachDStream: Checkpoint interval = null > 16/05/17 16:18:16 INFO dstream.ForEachDStream: Remember duration = 60000 ms > 16/05/17 16:18:16 INFO dstream.ForEachDStream: Initialized and validated > org.apache.spark.streaming.dstream.ForEachDStream@667afcd2 > 16/05/17 16:18:16 INFO dstream.ForEachDStream: metadataCleanupDelay = -1 > 16/05/17 16:18:16 INFO dstream.FilteredDStream: metadataCleanupDelay = -1 > 16/05/17 16:18:16 INFO dstream.MappedDStream: metadataCleanupDelay = -1 > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: metadataCleanupDelay = -1 > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: Slide time = 60000 ms > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: Storage level = > StorageLevel(false, false, false, false, 1) > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: Checkpoint interval = null > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: Remember duration = 60000 > ms > 16/05/17 16:18:16 INFO twitter.TwitterInputDStream: Initialized and validated > org.apache.spark.streaming.twitter.TwitterInputDStream@55861179 > 16/05/17 16:18:16 INFO dstream.MappedDStream: Slide time = 60000 ms > 16/05/17 16:18:16 INFO dstream.MappedDStream: Storage level = > StorageLevel(false, false, false, false, 1) > 16/05/17 16:18:16 INFO dstream.MappedDStream: Checkpoint interval = null > 16/05/17 16:18:16 INFO dstream.MappedDStream: Remember duration = 60000 ms > 16/05/17 16:18:16 INFO dstream.MappedDStream: Initialized and validated > org.apache.spark.streaming.dstream.MappedDStream@39234bd > 16/05/17 16:18:16 INFO dstream.FilteredDStream: Slide time = 60000 ms > 16/05/17 16:18:16 INFO dstream.FilteredDStream: Storage level = > StorageLevel(false, false, false, false, 1) > 16/05/17 16:18:16 INFO dstream.FilteredDStream: Checkpoint interval = null > 16/05/17 16:18:16 INFO dstream.FilteredDStream: Remember duration = 60000 ms > 16/05/17 16:18:16 INFO dstream.FilteredDStream: Initialized and validated > org.apache.spark.streaming.dstream.FilteredDStream@7b6836d6 > 16/05/17 16:18:16 INFO dstream.ForEachDStream: Slide time = 60000 ms > 16/05/17 16:18:16 INFO dstream.ForEachDStream: Storage level = > StorageLevel(false, false, false, false, 1) > 16/05/17 16:18:16 INFO dstream.ForEachDStream: Checkpoint interval = null > 16/05/17 16:18:16 INFO dstream.ForEachDStream: Remember duration = 60000 ms > 16/05/17 16:18:16 INFO dstream.ForEachDStream: Initialized and validated > org.apache.spark.streaming.dstream.ForEachDStream@5ab36fc9 > 16/05/17 16:18:16 INFO scheduler.DAGScheduler: Got job 1 (start at > SparkTweetStreamingHDFSLoad.java:1743) with 1 output partitions > 16/05/17 16:18:16 INFO scheduler.DAGScheduler: Final stage: ResultStage > 2(start at SparkTweetStreamingHDFSLoad.java:1743) > 16/05/17 16:18:16 INFO scheduler.DAGScheduler: Parents of final stage: List() > 16/05/17 16:18:16 INFO scheduler.DAGScheduler: Missing parents: List() > 16/05/17 16:18:16 INFO scheduler.DAGScheduler: Submitting ResultStage 2 > (Receiver 0 ParallelCollectionRDD[3] at makeRDD at > ReceiverTracker.scala:556), which has no missing parents > 16/05/17 16:18:16 INFO scheduler.ReceiverTracker: Receiver 0 started > 16/05/17 16:18:16 INFO storage.MemoryStore: ensureFreeSpace(62448) called > with curMem=8135, maxMem=2061647216 > 16/05/17 16:18:16 INFO storage.MemoryStore: Block broadcast_2 stored as > values in memory (estimated size 61.0 KB, free 1966.1 MB) > 16/05/17 16:18:16 INFO storage.MemoryStore: ensureFreeSpace(21083) called > with curMem=70583, maxMem=2061647216 > 16/05/17 16:18:16 INFO storage.MemoryStore: Block broadcast_2_piece0 stored > as bytes in memory (estimated size 20.6 KB, free 1966.1 MB) > 16/05/17 16:18:16 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in > memory on 172.16.28.195:57488 (size: 20.6 KB, free: 1966.1 MB) > 16/05/17 16:18:16 INFO spark.SparkContext: Created broadcast 2 from broadcast > at DAGScheduler.scala:861 > 16/05/17 16:18:16 INFO scheduler.DAGScheduler: Submitting 1 missing tasks > from ResultStage 2 (Receiver 0 ParallelCollectionRDD[3] at makeRDD at > ReceiverTracker.scala:556) > 16/05/17 16:18:16 INFO cluster.YarnClusterScheduler: Adding task set 2.0 with > 1 tasks > 16/05/17 16:18:16 INFO util.RecurringTimer: Started timer for JobGenerator at > time 1463482140000 > 16/05/17 16:18:16 INFO scheduler.JobGenerator: Started JobGenerator at > 1463482140000 ms > 16/05/17 16:18:16 INFO scheduler.JobScheduler: Started JobScheduler > 16/05/17 16:18:16 INFO streaming.StreamingContext: StreamingContext started > 16/05/17 16:18:16 INFO scheduler.TaskSetManager: Starting task 0.0 in stage > 2.0 (TID 70, node4, NODE_LOCAL, 3094 bytes) > 16/05/17 16:18:17 INFO impl.StdSchedulerFactory: Using default implementation > for ThreadExecutor > 16/05/17 16:18:17 INFO simpl.SimpleThreadPool: Job execution threads will use > class loader of thread: Driver > 16/05/17 16:18:17 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in > memory on node4:58845 (size: 20.6 KB, free: 530.0 MB) > 16/05/17 16:18:17 INFO core.SchedulerSignalerImpl: Initialized Scheduler > Signaller of type: class org.quartz.core.SchedulerSignalerImpl > 16/05/17 16:18:17 INFO core.QuartzScheduler: Quartz Scheduler v.1.8.6 created. > 16/05/17 16:18:17 INFO simpl.RAMJobStore: RAMJobStore initialized. > 16/05/17 16:18:17 INFO core.QuartzScheduler: Scheduler meta-data: Quartz > Scheduler (v1.8.6) 'DefaultQuartzScheduler' with instanceId 'NON_CLUSTERED' > Scheduler class: 'org.quartz.core.QuartzScheduler' - running locally. > NOT STARTED. > Currently in standby mode. > Number of jobs executed: 0 > Using thread pool 'org.quartz.simpl.SimpleThreadPool' - with 10 threads. > Using job-store 'org.quartz.simpl.RAMJobStore' - which does not support > persistence. and is not clustered. > > 16/05/17 16:18:17 INFO impl.StdSchedulerFactory: Quartz scheduler > 'DefaultQuartzScheduler' initialized from default resource file in Quartz > package: 'quartz.properties' > 16/05/17 16:18:17 INFO impl.StdSchedulerFactory: Quartz scheduler version: > 1.8.6 > 16/05/17 16:18:17 INFO core.QuartzScheduler: Scheduler > DefaultQuartzScheduler_$_NON_CLUSTERED started. > 16/05/17 16:18:17 INFO spark.SparkTweetStreamingHDFSLoad: END {}TwitterTweets > 16/05/17 16:18:17 INFO yarn.ApplicationMaster: Final app status: SUCCEEDED, > exitCode: 0 > 16/05/17 16:18:17 INFO streaming.StreamingContext: Invoking > stop(stopGracefully=false) from shutdown hook > 16/05/17 16:18:17 INFO scheduler.ReceiverTracker: Sent stop signal to all 1 > receivers > 16/05/17 16:18:17 INFO scheduler.TaskSetManager: Finished task 0.0 in stage > 2.0 (TID 70) in 718 ms on node4 (1/1) > 16/05/17 16:18:17 INFO scheduler.DAGScheduler: ResultStage 2 (start at > SparkTweetStreamingHDFSLoad.java:1743) finished in 0.717 s > 16/05/17 16:18:17 INFO cluster.YarnClusterScheduler: Removed TaskSet 2.0, > whose tasks have all completed, from pool > 16/05/17 16:18:17 INFO scheduler.ReceiverTracker: All of the receivers have > deregistered successfully > 16/05/17 16:18:17 INFO scheduler.ReceiverTracker: ReceiverTracker stopped > 16/05/17 16:18:17 INFO scheduler.JobGenerator: Stopping JobGenerator > immediately > 16/05/17 16:18:17 INFO util.RecurringTimer: Stopped timer for JobGenerator > after time -1 > 16/05/17 16:18:17 INFO scheduler.JobGenerator: Stopped JobGenerator > 16/05/17 16:18:17 INFO scheduler.JobScheduler: Stopped JobScheduler > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/streaming,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/streaming/batch,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/static/streaming,null} > 16/05/17 16:18:17 INFO streaming.StreamingContext: StreamingContext stopped > successfully > 16/05/17 16:18:17 INFO spark.SparkContext: Invoking stop() from shutdown hook > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/streaming/batch/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/streaming/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/metrics/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/stages/stage/kill,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/api,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/static,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/executors/threadDump/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/executors/threadDump,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/executors/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/executors,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/environment/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/environment,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/storage/rdd/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/storage/rdd,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/storage/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/storage,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/stages/pool/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/stages/pool,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/stages/stage/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/stages/stage,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/stages/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/stages,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/jobs/job/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/jobs/job,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/jobs/json,null} > 16/05/17 16:18:17 INFO handler.ContextHandler: stopped > o.s.j.s.ServletContextHandler{/jobs,null} > 16/05/17 16:18:17 INFO ui.SparkUI: Stopped Spark web UI at > http://172.16.28.195:59320 > 16/05/17 16:18:17 INFO scheduler.DAGScheduler: Stopping DAGScheduler > 16/05/17 16:18:17 INFO cluster.YarnClusterSchedulerBackend: Shutting down all > executors > 16/05/17 16:18:17 INFO cluster.YarnClusterSchedulerBackend: Asking each > executor to shut down > 16/05/17 16:18:17 INFO yarn.ApplicationMaster$AMEndpoint: Driver terminated > or disconnected! Shutting down. node4:50089 > 16/05/17 16:18:17 INFO yarn.ApplicationMaster$AMEndpoint: Driver terminated > or disconnected! Shutting down. node4:46484 > 16/05/17 16:18:18 INFO spark.MapOutputTrackerMasterEndpoint: > MapOutputTrackerMasterEndpoint stopped! > 16/05/17 16:18:18 INFO storage.MemoryStore: MemoryStore cleared > 16/05/17 16:18:18 INFO storage.BlockManager: BlockManager stopped > 16/05/17 16:18:18 INFO storage.BlockManagerMaster: BlockManagerMaster stopped > 16/05/17 16:18:18 INFO > scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: > OutputCommitCoordinator stopped! > 16/05/17 16:18:18 INFO spark.SparkContext: Successfully stopped SparkContext > 16/05/17 16:18:18 INFO remote.RemoteActorRefProvider$RemotingTerminator: > Shutting down remote daemon. > 16/05/17 16:18:18 INFO yarn.ApplicationMaster: Unregistering > ApplicationMaster with SUCCEEDED > 16/05/17 16:18:18 INFO remote.RemoteActorRefProvider$RemotingTerminator: > Remote daemon shut down; proceeding with flushing remote transports. > 16/05/17 16:18:18 INFO impl.AMRMClientImpl: Waiting for application to be > successfully unregistered. > 16/05/17 16:18:18 INFO yarn.ApplicationMaster: Deleting staging directory > .sparkStaging/application_1463479181441_0003 > 16/05/17 16:18:19 INFO util.ShutdownHookManager: Shutdown hook called > 16/05/17 16:18:19 INFO util.ShutdownHookManager: Deleting directory > /tmp/hadoop-hadoop/nm-local-dir/usercache/hadoop/appcache/application_1463479181441_0003/spark-5b36342a-6212-4cea-80da-b1961cab161c > > > > > > Sent from Yahoo Mail. Get the app <https://yho.com/148vdq> > -- Best Regards, Ayan Guha