Thanks Cody.  It turns out that there was an even simpler explanation (the
flaw you pointed out was accurate too).  I had mutable.Map instances being
passed where KafkaUtils wants immutable ones.

On Fri, May 6, 2016 at 8:32 AM, Cody Koeninger <c...@koeninger.org> wrote:

> Look carefully at the error message, the types you're passing in don't
> match.  For instance, you're passing in a message handler that returns
> a tuple, but the rdd return type you're specifying (the 5th type
> argument) is just String.
>
> On Fri, May 6, 2016 at 9:49 AM, Eric Friedman <eric.d.fried...@gmail.com>
> wrote:
> >         My build dependencies:
> >
> >
> >         compile 'org.scala-lang:scala-library:2.10.4'
> >
> >         compile 'org.apache.spark:spark-core_2.10:1.6.1'
> >
> >         compile 'org.apache.spark:spark-sql_2.10:1.6.1'
> >
> >         compile 'org.apache.spark:spark-hive_2.10:1.6.1'
> >
> >         compile 'org.apache.spark:spark-streaming_2.10:1.6.1'
> >
> >         compile 'com.databricks:spark-avro_2.10:2.0.1'
> >
> >
> >         compile 'org.apache.spark:spark-streaming-kafka_2.10:1.6.1'
> >
> >         compile 'org.apache.kafka:kafka-clients:0.8.2.1'
> >
> >         compile 'org.apache.kafka:kafka_2.10:0.8.2.1'
> >
> >         compile 'com.yammer.metrics:metrics-core:2.2.0'
> >
> >
> > On Fri, May 6, 2016 at 7:47 AM, Eric Friedman <eric.d.fried...@gmail.com
> >
> > wrote:
> >>
> >> Hello,
> >>
> >> I've been using createDirectStream with Kafka and now need to switch to
> >> the version of that API that lets me supply offsets for my topics.  I'm
> >> unable to get this to compile for some reason, even if I lift the very
> same
> >> usage from the Spark test suite.
> >>
> >> I'm calling it like this:
> >>
> >>     val topic = "offset"
> >>
> >>     val topicPartition = TopicAndPartition(topic, 0)
> >>
> >>     val messageHandler = (mmd: MessageAndMetadata[String, String]) =>
> >> (mmd.key, mmd.message)
> >>
> >>     val stream =  KafkaUtils.createDirectStream[String, String,
> >> StringDecoder, StringDecoder, String](
> >>
> >>         ssc, kafkaParams, Map(topicPartition -> 11L), messageHandler)
> >>
> >>
> >>
> >>
> >> Error:
> >>
> >> MyCode.scala:97: overloaded method value createDirectStream with
> >> alternatives:
> >>
> >>   (jssc:
> >> org.apache.spark.streaming.api.java.JavaStreamingContext,keyClass:
> >> Class[String],valueClass: Class[String],keyDecoderClass:
> >> Class[kafka.serializer.StringDecoder],valueDecoderClass:
> >> Class[kafka.serializer.StringDecoder],recordClass:
> >> Class[String],kafkaParams: java.util.Map[String,String],fromOffsets:
> >>
> java.util.Map[kafka.common.TopicAndPartition,java.lang.Long],messageHandler:
> >>
> org.apache.spark.api.java.function.Function[kafka.message.MessageAndMetadata[String,String],String])org.apache.spark.streaming.api.java.JavaInputDStream[String]
> >> <and>
> >>
> >>   (ssc: org.apache.spark.streaming.StreamingContext,kafkaParams:
> >> scala.collection.immutable.Map[String,String],fromOffsets:
> >>
> scala.collection.immutable.Map[kafka.common.TopicAndPartition,scala.Long],messageHandler:
> >> kafka.message.MessageAndMetadata[String,String] => String)(implicit
> >> evidence$14: scala.reflect.ClassTag[String], implicit evidence$15:
> >> scala.reflect.ClassTag[String], implicit evidence$16:
> >> scala.reflect.ClassTag[kafka.serializer.StringDecoder], implicit
> >> evidence$17: scala.reflect.ClassTag[kafka.serializer.StringDecoder],
> >> implicit evidence$18:
> >>
> scala.reflect.ClassTag[String])org.apache.spark.streaming.dstream.InputDStream[String]
> >>
> >>  cannot be applied to (org.apache.spark.streaming.StreamingContext,
> >> scala.collection.mutable.Map[String,String],
> >> scala.collection.mutable.Map[kafka.common.TopicAndPartition,scala.Long],
> >> kafka.message.MessageAndMetadata[String,String] => (String, String))
> >>
> >>     val stream =  KafkaUtils.createDirectStream[String, String,
> >> StringDecoder, StringDecoder, String](
> >>
> >>                                                ^
> >>
> >> one error found
> >
> >
>

Reply via email to