We are hitting the same issue on Spark 1.6.1 with tungsten enabled, kryo
enabled & sort based shuffle.

Did you find a resolution?

On Sat, Apr 9, 2016 at 6:31 AM, Ted Yu <yuzhih...@gmail.com> wrote:

> Not much.
>
> So no chance of different snappy version ?
>
> On Fri, Apr 8, 2016 at 1:26 PM, Nicolas Tilmans <ntilm...@gmail.com>
> wrote:
>
>> Hi Ted,
>>
>> The Spark version is 1.6.1, a nearly identical set of operations does
>> fine on smaller datasets. It's just a few joins then a groupBy and a count
>> in pyspark.sql on a Spark DataFrame.
>>
>> Any ideas?
>>
>> Nicolas
>>
>> On Fri, Apr 8, 2016 at 1:13 PM, Ted Yu <yuzhih...@gmail.com> wrote:
>>
>>> Did you encounter similar error on a smaller dataset ?
>>>
>>> Which release of Spark are you using ?
>>>
>>> Is it possible you have an incompatible snappy version somewhere in your
>>> classpath ?
>>>
>>> Thanks
>>>
>>> On Fri, Apr 8, 2016 at 12:36 PM, entee <ntilm...@gmail.com> wrote:
>>>
>>>> I'm trying to do a relatively large join (0.5TB shuffle read/write) and
>>>> just
>>>> calling a count (or show) on the dataframe fails to complete, getting
>>>> to the
>>>> last task before failing:
>>>>
>>>> Py4JJavaError: An error occurred while calling o133.count.
>>>> : org.apache.spark.SparkException: Job aborted due to stage failure:
>>>> Task 5
>>>> in stage 11.0 failed 4 times, most recent failure: Lost task 5.3 in
>>>> stage
>>>> 11.0 (TID 7836, xxxx.com): java.io.IOException: failed to uncompress
>>>> the
>>>> chunk: PARSING_ERROR(2)
>>>>
>>>> (full stack trace below)
>>>>
>>>> I'm not sure why this would happen, any ideas about whether our
>>>> configuration is off or how to fix this?
>>>>
>>>> Nicolas
>>>>
>>>>
>>>>
>>>> Py4JJavaError: An error occurred while calling o133.count.
>>>> : org.apache.spark.SparkException: Job aborted due to stage failure:
>>>> Task 5
>>>> in stage 11.0 failed 4 times, most recent failure: Lost task 5.3 in
>>>> stage
>>>> 11.0 (TID 7836, xxxx.com): java.io.IOException: failed to uncompress
>>>> the
>>>> chunk: PARSING_ERROR(2)
>>>>         at
>>>>
>>>> org.xerial.snappy.SnappyInputStream.hasNextChunk(SnappyInputStream.java:361)
>>>>         at
>>>> org.xerial.snappy.SnappyInputStream.rawRead(SnappyInputStream.java:158)
>>>>         at
>>>> org.xerial.snappy.SnappyInputStream.read(SnappyInputStream.java:142)
>>>>         at
>>>> java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
>>>>         at
>>>> java.io.BufferedInputStream.read1(BufferedInputStream.java:286)
>>>>         at
>>>> java.io.BufferedInputStream.read(BufferedInputStream.java:345)
>>>>         at java.io.DataInputStream.read(DataInputStream.java:149)
>>>>         at
>>>> org.spark-project.guava.io.ByteStreams.read(ByteStreams.java:899)
>>>>         at
>>>> org.spark-project.guava.io.ByteStreams.readFully(ByteStreams.java:733)
>>>>         at
>>>>
>>>> org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:119)
>>>>         at
>>>>
>>>> org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:102)
>>>>         at scala.collection.Iterator$$anon$12.next(Iterator.scala:397)
>>>>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
>>>>         at
>>>>
>>>> org.apache.spark.util.CompletionIterator.next(CompletionIterator.scala:30)
>>>>         at
>>>>
>>>> org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43)
>>>>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
>>>>         at
>>>>
>>>> org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:168)
>>>>         at
>>>> org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:90)
>>>>         at
>>>> org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:64)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
>>>>         at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:88)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>         at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:96)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:95)
>>>>         at
>>>> scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:396)
>>>>         at
>>>> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:369)
>>>>         at
>>>> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:369)
>>>>         at
>>>>
>>>> org.apache.spark.shuffle.sort.UnsafeShuffleWriter.write(UnsafeShuffleWriter.java:163)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>>>>         at org.apache.spark.scheduler.Task.run(Task.scala:89)
>>>>         at
>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>>>>         at
>>>>
>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>>         at
>>>>
>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>>>         at java.lang.Thread.run(Thread.java:745)
>>>>
>>>> Driver stacktrace:
>>>>         at
>>>> org.apache.spark.scheduler.DAGScheduler.org
>>>> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
>>>>         at
>>>>
>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>>         at
>>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
>>>>         at scala.Option.foreach(Option.scala:257)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
>>>>         at
>>>> org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>>>         at
>>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
>>>>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
>>>>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
>>>>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
>>>>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929)
>>>>         at
>>>> org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
>>>>         at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
>>>>         at org.apache.spark.rdd.RDD.collect(RDD.scala:926)
>>>>         at
>>>>
>>>> org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:166)
>>>>         at
>>>>
>>>> org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
>>>>         at
>>>>
>>>> org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
>>>>         at
>>>>
>>>> org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
>>>>         at
>>>>
>>>> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
>>>>         at
>>>> org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086)
>>>>         at
>>>> org.apache.spark.sql.DataFrame.org
>>>> $apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498)
>>>>         at
>>>> org.apache.spark.sql.DataFrame.org
>>>> $apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505)
>>>>         at
>>>>
>>>> org.apache.spark.sql.DataFrame$$anonfun$count$1.apply(DataFrame.scala:1515)
>>>>         at
>>>>
>>>> org.apache.spark.sql.DataFrame$$anonfun$count$1.apply(DataFrame.scala:1514)
>>>>         at
>>>> org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099)
>>>>         at org.apache.spark.sql.DataFrame.count(DataFrame.scala:1514)
>>>>         at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>>>>         at
>>>>
>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>>>>         at
>>>>
>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>         at java.lang.reflect.Method.invoke(Method.java:497)
>>>>         at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
>>>>         at
>>>> py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
>>>>         at py4j.Gateway.invoke(Gateway.java:259)
>>>>         at
>>>> py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
>>>>         at py4j.commands.CallCommand.execute(CallCommand.java:79)
>>>>         at py4j.GatewayConnection.run(GatewayConnection.java:209)
>>>>         at java.lang.Thread.run(Thread.java:745)
>>>> Caused by: java.io.IOException: failed to uncompress the chunk:
>>>> PARSING_ERROR(2)
>>>>         at
>>>>
>>>> org.xerial.snappy.SnappyInputStream.hasNextChunk(SnappyInputStream.java:361)
>>>>         at
>>>> org.xerial.snappy.SnappyInputStream.rawRead(SnappyInputStream.java:158)
>>>>         at
>>>> org.xerial.snappy.SnappyInputStream.read(SnappyInputStream.java:142)
>>>>         at
>>>> java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
>>>>         at
>>>> java.io.BufferedInputStream.read1(BufferedInputStream.java:286)
>>>>         at
>>>> java.io.BufferedInputStream.read(BufferedInputStream.java:345)
>>>>         at java.io.DataInputStream.read(DataInputStream.java:149)
>>>>         at
>>>> org.spark-project.guava.io.ByteStreams.read(ByteStreams.java:899)
>>>>         at
>>>> org.spark-project.guava.io.ByteStreams.readFully(ByteStreams.java:733)
>>>>         at
>>>>
>>>> org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:119)
>>>>         at
>>>>
>>>> org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:102)
>>>>         at scala.collection.Iterator$$anon$12.next(Iterator.scala:397)
>>>>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
>>>>         at
>>>>
>>>> org.apache.spark.util.CompletionIterator.next(CompletionIterator.scala:30)
>>>>         at
>>>>
>>>> org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43)
>>>>         at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
>>>>         at
>>>>
>>>> org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:168)
>>>>         at
>>>> org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:90)
>>>>         at
>>>> org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:64)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
>>>>         at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:88)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>         at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:96)
>>>>         at
>>>>
>>>> org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:95)
>>>>         at
>>>> scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:396)
>>>>         at
>>>> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:369)
>>>>         at
>>>> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:369)
>>>>         at
>>>>
>>>> org.apache.spark.shuffle.sort.UnsafeShuffleWriter.write(UnsafeShuffleWriter.java:163)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
>>>>         at
>>>>
>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>>>>         at org.apache.spark.scheduler.Task.run(Task.scala:89)
>>>>         at
>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>>>>         at
>>>>
>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>>         at
>>>>
>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>>>         ... 1 more
>>>>
>>>>
>>>>
>>>> --
>>>> View this message in context:
>>>> http://apache-spark-user-list.1001560.n3.nabble.com/DataFrame-job-fails-on-parsing-error-help-tp26724.html
>>>> Sent from the Apache Spark User List mailing list archive at Nabble.com.
>>>>
>>>> ---------------------------------------------------------------------
>>>> To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
>>>> For additional commands, e-mail: user-h...@spark.apache.org
>>>>
>>>>
>>>
>>
>

Reply via email to