Hi, You should not directly use these JVM options, and you can use `spark.executor.memory` and `spark.driver.memory` for the optimization.
// maropu On Thu, Apr 14, 2016 at 11:32 AM, Divya Gehlot <divya.htco...@gmail.com> wrote: > Hi, > I am using Spark 1.5.2 with Scala 2.10 and my Spark job keeps failing with > exit code 143 . > except one job where I am using unionAll and groupBy operation on multiple > columns . > > Please advice me the options to optimize it . > The one option which I am using it now > --conf spark.executor.extraJavaOptions -XX:MaxPermSize=1024m > -XX:PermSize=256m --conf spark.driver.extraJavaOptions > -XX:MaxPermSize=1024m -XX:PermSize=256m --conf > spark.yarn.executor.memoryOverhead=1024 > > Need to know the best practices/better ways to optimize code. > > Thanks, > Divya > > -- --- Takeshi Yamamuro