I'm running it via pyspark against yarn in client deploy mode. I do notice
in the spark web ui under Environment tab all the options I've set, so I'm
guessing these are accepted.

On Sat, Apr 9, 2016 at 5:52 PM, Jacek Laskowski <ja...@japila.pl> wrote:

> Hi,
>
> (I haven't played with GraphFrames)
>
> What's your `sc.master`? How do you run your application --
> spark-submit or java -jar or sbt run or...? The reason I'm asking is
> that few options might not be in use whatsoever, e.g.
> spark.driver.memory and spark.executor.memory in local mode.
>
> Pozdrawiam,
> Jacek Laskowski
> ----
> https://medium.com/@jaceklaskowski/
> Mastering Apache Spark http://bit.ly/mastering-apache-spark
> Follow me at https://twitter.com/jaceklaskowski
>
>
> On Sat, Apr 9, 2016 at 7:51 PM, Buntu Dev <buntu...@gmail.com> wrote:
> > I'm running this motif pattern against 1.5M vertices (5.5mb) and 10M
> (60mb)
> > edges:
> >
> >  tgraph.find("(a)-[]->(b); (c)-[]->(b); (c)-[]->(d)")
> >
> > I keep running into Java heap space errors:
> >
> > ~~~~~
> >
> > ERROR actor.ActorSystemImpl: Uncaught fatal error from thread
> > [sparkDriver-akka.actor.default-dispatcher-33] shutting down ActorSystem
> > [sparkDriver]
> > java.lang.OutOfMemoryError: Java heap space
> > at scala.reflect.ManifestFactory$$anon$6.newArray(Manifest.scala:90)
> > at scala.reflect.ManifestFactory$$anon$6.newArray(Manifest.scala:88)
> > at scala.Array$.ofDim(Array.scala:218)
> > at akka.util.ByteIterator.toArray(ByteIterator.scala:462)
> > at akka.util.ByteString.toArray(ByteString.scala:321)
> > at
> >
> akka.remote.transport.AkkaPduProtobufCodec$.decodePdu(AkkaPduCodec.scala:168)
> > at
> >
> akka.remote.transport.ProtocolStateActor.akka$remote$transport$ProtocolStateActor$$decodePdu(AkkaProtocolTransport.scala:513)
> > at
> >
> akka.remote.transport.ProtocolStateActor$$anonfun$5.applyOrElse(AkkaProtocolTransport.scala:357)
> > at
> >
> akka.remote.transport.ProtocolStateActor$$anonfun$5.applyOrElse(AkkaProtocolTransport.scala:352)
> > at
> >
> scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
> > at akka.actor.FSM$class.processEvent(FSM.scala:595)
> > at
> >
> akka.remote.transport.ProtocolStateActor.processEvent(AkkaProtocolTransport.scala:220)
> > at akka.actor.FSM$class.akka$actor$FSM$$processMsg(FSM.scala:589)
> > at akka.actor.FSM$$anonfun$receive$1.applyOrElse(FSM.scala:583)
> > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
> > at akka.actor.ActorCell.invoke(ActorCell.scala:456)
> > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
> > at akka.dispatch.Mailbox.run(Mailbox.scala:219)
> > at
> >
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
> > at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
> > at
> >
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
> > at
> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
> > at
> >
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
> >
> > ~~~~~
> >
> >
> > Here is my config:
> >
> > conf.set("spark.executor.memory", "8192m")
> > conf.set("spark.executor.cores", 4)
> > conf.set("spark.driver.memory", "10240m")
> > conf.set("spark.driver.maxResultSize", "2g")
> > conf.set("spark.kryoserializer.buffer.max", "1024mb")
> >
> >
> > Wanted to know if there are any other configs to tweak?
> >
> >
> > Thanks!
>

Reply via email to