Hi Ted Can specify the core as follows for example 12 cores?:
val conf = new SparkConf(). setAppName("ImportStat"). *setMaster("local[12]").* set("spark.driver.allowMultipleContexts", "true"). set("spark.hadoop.validateOutputSpecs", "false") val sc = new SparkContext(conf) Dr Mich Talebzadeh LinkedIn * https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw <https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw>* http://talebzadehmich.wordpress.com On 30 March 2016 at 14:59, Ted Yu <yuzhih...@gmail.com> wrote: > -c CORES, --cores CORES Total CPU cores to allow Spark applications to > use on the machine (default: all available); only on worker > > bq. sc.getConf().set() > > I think you should use this pattern (shown in > https://spark.apache.org/docs/latest/spark-standalone.html): > > val conf = new SparkConf() > .setMaster(...) > .setAppName(...) > .set("spark.cores.max", "1")val sc = new SparkContext(conf) > > > On Wed, Mar 30, 2016 at 5:46 AM, vetal king <greenve...@gmail.com> wrote: > >> Hi all, >> >> While submitting Spark Job I am am specifying options --executor-cores 1 >> and --driver-cores 1. However, when the job was submitted, the job used all >> available cores. So I tried to limit the cores within my main function >> sc.getConf().set("spark.cores.max", "1"); however it still used all >> available cores >> >> I am using Spark in standalone mode (spark://<hostname>:7077) >> >> Any idea what I am missing? >> Thanks in Advance, >> >> Shridhar >> >> >