Hi Ted, all,
do you have any advice regarding my questions in my initial email?
I tried Spark 1.5.2 and 1.6.0 without success. The problem seems to be
that RDDs use some transient fields which are not restored when they
are recovered from checkpoint files. In case of some RDD
implementations it is SparkContext, but it can be also implementation
specific Configuration object, etc. I see in the sources that in the
case of DStream recovery, the DStreamGraph takes care of restoring
StreamingContext in all its DStream-s. But I haven't found any similar
mechanism for RDDs.
So my question is whether I am doing something wrong or this is a bug
in Spark? If later, is there some workaround except for implementing a
custom DStream which will return the same RDD every batch interval and
joining at DStream level instead of RDD level in transform?
Thanks,
Lubo
On 18.3.2016 18:36, Ted Yu wrote:
This is the line where NPE came from:
if (conf.get(SCAN) != null) {
So Configuration instance was null.
On Fri, Mar 18, 2016 at 9:58 AM, Lubomir Nerad
<lubomir.ne...@oracle.com <mailto:lubomir.ne...@oracle.com>> wrote:
The HBase version is 1.0.1.1.
Thanks,
Lubo
On 18.3.2016 17:29, Ted Yu wrote:
I looked at the places in SparkContext.scala where NewHadoopRDD
is constrcuted.
It seems the Configuration object shouldn't be null.
Which hbase release are you using (so that I can see which line
the NPE came from) ?
Thanks
On Fri, Mar 18, 2016 at 8:05 AM, Lubomir Nerad
<lubomir.ne...@oracle.com <mailto:lubomir.ne...@oracle.com>> wrote:
Hi,
I tried to replicate the example of joining DStream with
lookup RDD from
http://spark.apache.org/docs/latest/streaming-programming-guide.html#transform-operation.
It works fine, but when I enable checkpointing for the
StreamingContext and let the application to recover from a
previously created checkpoint, I always get an exception
during start and the whole application fails. I tried various
types of lookup RDD, but the result is the same.
Exception in the case of HBase RDD is:
Exception in thread "main" java.lang.NullPointerException
at
org.apache.hadoop.hbase.mapreduce.TableInputFormat.setConf(TableInputFormat.java:119)
at
org.apache.spark.rdd.NewHadoopRDD.getPartitions(NewHadoopRDD.scala:109)
at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at
org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at
org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at
org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at
org.apache.spark.Partitioner$$anonfun$2.apply(Partitioner.scala:58)
at
org.apache.spark.Partitioner$$anonfun$2.apply(Partitioner.scala:58)
at scala.math.Ordering$$anon$5.compare(Ordering.scala:122)
at
java.util.TimSort.countRunAndMakeAscending(TimSort.java:351)
at java.util.TimSort.sort(TimSort.java:216)
at java.util.Arrays.sort(Arrays.java:1438)
at scala.collection.SeqLike$class.sorted(SeqLike.scala:615)
at scala.collection.AbstractSeq.sorted(Seq.scala:40)
at scala.collection.SeqLike$class.sortBy(SeqLike.scala:594)
at scala.collection.AbstractSeq.sortBy(Seq.scala:40)
at
org.apache.spark.Partitioner$.defaultPartitioner(Partitioner.scala:58)
at
org.apache.spark.rdd.PairRDDFunctions$$anonfun$join$2.apply(PairRDDFunctions.scala:651)
at
org.apache.spark.rdd.PairRDDFunctions$$anonfun$join$2.apply(PairRDDFunctions.scala:651)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at
org.apache.spark.rdd.PairRDDFunctions.join(PairRDDFunctions.scala:650)
at
org.apache.spark.api.java.JavaPairRDD.join(JavaPairRDD.scala:546)
I tried Spark 1.5.2 and 1.6.0 without success. The problem
seems to be that RDDs use some transient fields which are not
restored when they are recovered from checkpoint files. In
case of some RDD implementations it is SparkContext, but it
can be also implementation specific Configuration object,
etc. I see in the sources that in the case of DStream
recovery, the DStreamGraph takes care of restoring
StreamingContext in all its DStream-s. But I haven't found
any similar mechanism for RDDs.
So my question is whether I am doing something wrong or this
is a bug in Spark? If later, is there some workaround except
for implementing a custom DStream which will return the same
RDD every batch interval and joining at DStream level instead
of RDD level in transform?
I apologize if this has been discussed in the past and I
missed it when looking into archive.
Thanks,
Lubo
---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
<mailto:user-unsubscr...@spark.apache.org>
For additional commands, e-mail: user-h...@spark.apache.org
<mailto:user-h...@spark.apache.org>