I need to convert time stamps into a format I can use with matplotlib plot_date(). epoch2num() works fine if I use it in my driver how ever I get a numpy constructor error if use it in a UDF
Any idea what the problem is? Thanks Andy P.s I am using python3 and spark-1.6 from pyspark.sql.functions import udf from pyspark.sql.types import FloatType, DoubleType, DecimalType import pandas as pd import numpy as np from matplotlib.dates import epoch2num gdf1 = cdf1.selectExpr("count", "row_key", "created", "unix_timestamp(created) as ms") gdf1.printSchema() gdf1.show(10, truncate=False) root |-- count: long (nullable = true) |-- row_key: string (nullable = true) |-- created: timestamp (nullable = true) |-- ms: long (nullable = true) +-----+---------------+---------------------+----------+ |count|row_key |created |ms | +-----+---------------+---------------------+----------+ |1 |HillaryClinton |2016-03-09 11:44:15.0|1457552655| |2 |HillaryClinton |2016-03-09 11:44:30.0|1457552670| |1 |HillaryClinton |2016-03-09 11:44:45.0|1457552685| |2 |realDonaldTrump|2016-03-09 11:44:15.0|1457552655| |1 |realDonaldTrump|2016-03-09 11:44:30.0|1457552670| |1 |realDonaldTrump|2016-03-09 11:44:45.0|1457552685| |3 |realDonaldTrump|2016-03-09 11:45:00.0|1457552700| +-----+---------------+---------------------+----------+ def foo(e): return epoch2num(e) epoch2numUDF = udf(foo, FloatType()) #epoch2numUDF = udf(lambda e: epoch2num(e), FloatType()) #epoch2numUDF = udf(lambda e: e + 5000000.5, FloatType()) gdf2 = gdf1.withColumn("date", epoch2numUDF(gdf1.ms)) gdf2.printSchema() gdf2.show(truncate=False) Py4JJavaError: An error occurred while calling o925.showString. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 32.0 failed 1 times, most recent failure: Lost task 0.0 in stage 32.0 (TID 91, localhost): net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for numpy.dtype) at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstru ctor.java:23) at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707) at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175) at net.razorvine.pickle.Unpickler.load(Unpickler.java:99) at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112) Works fine if I use PANDAS pdf = gdf1.toPandas() pdf['date'] = epoch2num(pdf['ms'] )