Hi Tamas, I feel terribly sorry that I forgot to mention we are currently running Spark 1.6. Thanks for your reply though.
BR, Todd Leo Tamas Szuromi <tamas.szur...@odigeo.com>于2016年3月5日 周六下午4:33写道: > Hey, > We had the same with Spark 1.5.x and disappeared after we upgraded to 1.6. > > Tamas > > > On Saturday, 5 March 2016, SLiZn Liu <sliznmail...@gmail.com> wrote: > >> Hi Spark Mailing List, >> >> I’m running terabytes of text files with Spark on Mesos, the job runs >> fine until we decided to switch to Mesos fine-grained mode. >> >> At first glance, we spotted massive number of task lost errors in logs: >> >> 16/03/05 04:01:20 ERROR TaskSchedulerImpl: Ignoring update with state LOST >> for TID 14420 because its task set is gone (this is likely the result of >> receiving duplicate task finished status updates) >> 16/03/05 04:01:20 WARN TaskSetManager: Lost task 122.0 in stage 10.0 (TID >> 13901, ourhost.com): java.io.FileNotFoundException: >> /home/mesos/mesos-slave/slaves/20160222-161607-2315648778-5050-44877-S0/frameworks/20160222-183113-2332425994-5050-54405-0145/executors/20160222-161607-2315648778-5050-44877-S0/runs/62137cc2-317e-4500-982b-0007106aec40/blockmgr-16b8353c-ac6c-4019-b8e7-a16659cf6fe2/33/shuffle_2_122_0.index.8a14cde6-2877-4634-b4c2-fc9384f2ce8d >> (No such file or directory) >> at java.io.FileOutputStream.open0(Native Method) >> at java.io.FileOutputStream.open(FileOutputStream.java:270) >> at java.io.FileOutputStream.<init>(FileOutputStream.java:213) >> at java.io.FileOutputStream.<init>(FileOutputStream.java:162) >> at >> org.apache.spark.shuffle.IndexShuffleBlockResolver.writeIndexFileAndCommit(IndexShuffleBlockResolver.scala:141) >> at >> org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:161) >> at >> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) >> at >> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) >> at org.apache.spark.scheduler.Task.run(Task.scala:89) >> at >> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) >> at >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >> at >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >> at java.lang.Thread.run(Thread.java:745) >> >> I don’t know if the first line of task scheduler error is related, I >> asked in this mailing list before but had no luck to find the cause. >> >> As I dig further, I found the following OOM exception, >> >> 16/03/05 04:01:20 ERROR SparkUncaughtExceptionHandler: Uncaught exception in >> thread Thread[Executor task launch worker-83,5,main] >> java.lang.OutOfMemoryError: Unable to acquire 262144 bytes of memory, got >> 160165 >> at >> org.apache.spark.memory.MemoryConsumer.allocateArray(MemoryConsumer.java:91) >> at >> org.apache.spark.unsafe.map.BytesToBytesMap.allocate(BytesToBytesMap.java:735) >> at >> org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:197) >> at >> org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:212) >> at >> org.apache.spark.sql.execution.UnsafeFixedWidthAggregationMap.<init>(UnsafeFixedWidthAggregationMap.java:103) >> at >> org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.<init>(TungstenAggregationIterator.scala:483) >> at >> org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:95) >> at >> org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:86) >> at >> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) >> at >> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710) >> at >> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) >> at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) >> at >> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) >> at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) >> at >> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) >> at >> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) >> at org.apache.spark.scheduler.Task.run(Task.scala:89) >> at >> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) >> at >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >> at >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >> at java.lang.Thread.run(Thread.java:745) >> >> Anyone knows if this is a bug, or some configuration is wrong? >> ------------------------------ >> >> BR, >> Todd Leo >> >> >