so why does 'saveAsHadoopDataset' incurs so much memory pressure? Should I try to reduce hbase caching value ?
On Wed, Mar 2, 2016 at 7:51 AM, Nirav Patel <npa...@xactlycorp.com> wrote: > Hi, > > I have a spark jobs that runs on yarn and keeps failing at line where i do : > > > val hConf = HBaseConfiguration.create > hConf.setInt("hbase.client.scanner.caching", 10000) > hConf.setBoolean("hbase.cluster.distributed", true) > > new PairRDDFunctions(hbaseRdd).saveAsHadoopDataset(jobConfig) > > > Basically at this stage multiple Executors fails after high GC activities. > However none of the executor logs, driver logs or node manager logs indicate > any OutOfMemory errors or GC Overhead Exceeded errors or memory limits > exceeded errors. I don't see any other reason for Executor failures as well. > > > Driver Logs: > > Failing Oozie Launcher, Main class > [org.apache.oozie.action.hadoop.SparkMain], main() threw exception, Job > aborted due to stage failure: Task 388 in stage 22.0 failed 4 times, most > recent failure: Lost task 388.3 in stage 22.0 (TID 32141, maprnode5): > ExecutorLostFailure (executor 5 lost) > Driver stacktrace: > org.apache.spark.SparkException: Job aborted due to stage failure: Task 388 > in stage 22.0 failed 4 times, most recent failure: Lost task 388.3 in stage > 22.0 (TID 32141, maprnode5): ExecutorLostFailure (executor 5 lost) > Driver stacktrace: > at > org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1271) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1270) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1270) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1496) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1458) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1447) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at > org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1824) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1837) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1914) > at > org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply$mcV$sp(PairRDDFunctions.scala:1124) > at > org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply(PairRDDFunctions.scala:1065) > at > org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply(PairRDDFunctions.scala:1065) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147) > at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:310) > at > org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopDataset(PairRDDFunctions.scala:1065) > > > > Executor logs: > > > 16/02/24 11:09:47 INFO executor.Executor: Finished task 224.0 in stage 8.0 > (TID 15318). 2099 bytes result sent to driver > 16/02/24 11:09:47 INFO executor.CoarseGrainedExecutorBackend: Got assigned > task 15333 > 16/02/24 11:09:47 INFO executor.Executor: Running task 239.0 in stage 8.0 > (TID 15333) > 16/02/24 11:09:47 INFO storage.ShuffleBlockFetcherIterator: Getting 125 > non-empty blocks out of 3007 blocks > 16/02/24 11:09:47 INFO storage.ShuffleBlockFetcherIterator: Started 14 remote > fetches in 10 ms > 16/02/24 11:11:47 ERROR server.TransportChannelHandler: Connection to > maprnode5 has been quiet for 120000 ms while there are outstanding requests. > Assuming connection is dead; please adjust spark.network.timeout if this is > wrong. > 16/02/24 11:11:47 ERROR client.TransportResponseHandler: Still have 1 > requests outstanding when connection from maprnode5 is closed > 16/02/24 11:11:47 ERROR shuffle.OneForOneBlockFetcher: Failed while starting > block fetches > java.io.IOException: Connection from maprnode5 closed > at > org.apache.spark.network.client.TransportResponseHandler.channelUnregistered(TransportResponseHandler.java:104) > at > org.apache.spark.network.server.TransportChannelHandler.channelUnregistered(TransportChannelHandler.java:91) > at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelUnregistered(AbstractChannelHandlerContext.java:158) > at > io.netty.channel.AbstractChannelHandlerContext.fireChannelUnregistered(AbstractChannelHandlerContext.java:144) > at > io.netty.channel.ChannelInboundHandlerAdapter.channelUnregistered(ChannelInboundHandlerAdapter.java:53) > at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelUnregistered(AbstractChannelHandlerContext.java:158) > at > io.netty.channel.AbstractChannelHandlerContext.fireChannelUnregistered(AbstractChannelHandlerContext.java:144) > at > io.netty.channel.ChannelInboundHandlerAdapter.channelUnregistered(ChannelInboundHandlerAdapter.java:53) > at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelUnregistered(AbstractChannelHandlerContext.java:158) > at > io.netty.channel.AbstractChannelHandlerContext.fireChannelUnregistered(AbstractChannelHandlerContext.java:144) > at > io.netty.channel.ChannelInboundHandlerAdapter.channelUnregistered(ChannelInboundHandlerAdapter.java:53) > at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelUnregistered(AbstractChannelHandlerContext.java:158) > at > io.netty.channel.AbstractChannelHandlerContext.fireChannelUnregistered(AbstractChannelHandlerContext.java:144) > at > io.netty.channel.DefaultChannelPipeline.fireChannelUnregistered(DefaultChannelPipeline.java:739) > at > io.netty.channel.AbstractChannel$AbstractUnsafe$8.run(AbstractChannel.java:659) > at > io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:357) > at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:357) > at > io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111) > at java.lang.Thread.run(Thread.java:744) > 16/02/24 11:11:47 INFO shuffle.RetryingBlockFetcher: Retrying fetch (1/3) for > 6 outstanding blocks after 5000 ms > 16/02/24 11:11:52 INFO client.TransportClientFactory: Found inactive > connection to maprnode5, creating a new one. > 16/02/24 11:12:16 WARN server.TransportChannelHandler: Exception in > connection from maprnode5 > java.io.IOException: Connection reset by peer > at sun.nio.ch.FileDispatcherImpl.read0(Native Method) > at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39) > at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223) > at sun.nio.ch.IOUtil.read(IOUtil.java:192) > at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:379) > at > io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:313) > at > io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:881) > at > io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:242) > at > io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:119) > at > io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511) > at > io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468) > at > io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382) > at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354) > at > io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111) > at java.lang.Thread.run(Thread.java:744) > 16/02/24 11:12:16 ERROR client.TransportResponseHandler: Still have 1 > requests outstanding when connection from maprnode5 is closed > 16/02/24 11:12:16 ERROR shuffle.OneForOneBlockFetcher: Failed while starting > block fetches > > -- [image: What's New with Xactly] <http://www.xactlycorp.com/email-click/> <https://www.nyse.com/quote/XNYS:XTLY> [image: LinkedIn] <https://www.linkedin.com/company/xactly-corporation> [image: Twitter] <https://twitter.com/Xactly> [image: Facebook] <https://www.facebook.com/XactlyCorp> [image: YouTube] <http://www.youtube.com/xactlycorporation>