Hi, I am using mllib. I use the ml vectorization tools to create the vectorized input dataframe for the ml/mllib machine-learning models with schema: root |-- label: double (nullable = true) |-- features: vector (nullable = true)
To avoid repeated vectorization, I am trying to save and load this dataframe using df.write.format("json").mode("overwrite").save( url ) val data = Spark.sqlc.read.format("json").load( url ) However when I load the dataframe, the newly loaded dataframe has the following schema: root |-- features: struct (nullable = true) | |-- indices: array (nullable = true) | | |-- element: long (containsNull = true) | |-- size: long (nullable = true) | |-- type: long (nullable = true) | |-- values: array (nullable = true) | | |-- element: double (containsNull = true) |-- label: double (nullable = true) which the machine-learning models do not recognize. Is there a way I can save and load this dataframe without the schema changing. I assume it has to do with the fact that Vector is not a basic type. thanks -Raj -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/Saving-and-Loading-Dataframes-tp26339.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org