Yes, you should be okay to test your code. :)

On Mon, Feb 22, 2016 at 5:57 PM, Aris <arisofala...@gmail.com> wrote:

> If I build from git branch origin/branch-1.6 will I be OK to test out my
> code?
>
> Thank you so much TD!
>
> Aris
>
> On Mon, Feb 22, 2016 at 2:48 PM, Tathagata Das <
> tathagata.das1...@gmail.com> wrote:
>
>> There were a few bugs that were solved with mapWithState recently. Would
>> be available in 1.6.1 (RC to be cut soon).
>>
>> On Mon, Feb 22, 2016 at 5:29 PM, Aris <arisofala...@gmail.com> wrote:
>>
>>> Hello Spark community, and especially TD and Spark Streaming folks:
>>>
>>> I am using the new Spark 1.6.0 Streaming mapWithState API, in order to
>>> accomplish a streaming joining task with data.
>>>
>>> Things work fine on smaller sets of data, but on a single-node large
>>> cluster with JSON strings amounting to 2.5 GB problems start to occur, I
>>> get a NullPointerException. It appears to happen in my code when I call
>>> DataFrame.write.parquet()
>>>
>>> I am reliably reproducing this, and it appears to be internal to
>>> mapWithState -- I don't know what else I can do to make progress, any
>>> thoughts?
>>>
>>>
>>>
>>> Here is the stack trace:
>>>
>>> 16/02/22 22:03:54 ERROR Executor: Exception in task 1.0 in stage 4349.0
>>>> (TID 6386)
>>>> java.lang.NullPointerException
>>>>         at
>>>> org.apache.spark.streaming.util.OpenHashMapBasedStateMap.getByTime(StateMap.scala:117)
>>>>         at
>>>> org.apache.spark.streaming.util.OpenHashMapBasedStateMap.getByTime(StateMap.scala:117)
>>>>         at
>>>> org.apache.spark.streaming.rdd.MapWithStateRDDRecord$.updateRecordWithData(MapWithStateRDD.scala:69)
>>>>         at
>>>> org.apache.spark.streaming.rdd.MapWithStateRDD.compute(MapWithStateRDD.scala:154)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at
>>>> org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:69)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
>>>>         at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>         at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>         at
>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
>>>>         at
>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>>>>         at org.apache.spark.scheduler.Task.run(Task.scala:89)
>>>>         at
>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>>>>         at
>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>>         at
>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>>>         at java.lang.Thread.run(Thread.java:745)
>>>
>>>
>>>
>>>> 16/02/22 22:03:55 ERROR JobScheduler: Error running job streaming job
>>>> 1456178580000 ms.0
>>>> org.apache.spark.SparkException: Job aborted due to stage failure: Task
>>>> 12 in stage 4349.0 failed 1 times, most recent failure: Lost task 12.0 in
>>>> stage 4349.0 (TID 6397, localhost): java.lang.NullPointerException
>>>>         at
>>>> org.apache.spark.streaming.util.OpenHashMapBasedStateMap.getByTime(StateMap.scala:117)
>>>>         at
>>>> org.apache.spark.streaming.util.OpenHashMapBasedStateMap.getByTime(StateMap.scala:117)
>>>>         at
>>>> org.apache.spark.streaming.rdd.MapWithStateRDDRecord$.updateRecordWithData(MapWithStateRDD.scala:69)
>>>>         at
>>>> org.apache.spark.streaming.rdd.MapWithStateRDD.compute(MapWithStateRDD.scala:154)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at
>>>> org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:69)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
>>>>         at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>         at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>         at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>>>>         at
>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
>>>>         at
>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>>>>         at org.apache.spark.scheduler.Task.run(Task.scala:89)
>>>>         at
>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>>>>         at
>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>>         at
>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>>>         at java.lang.Thread.run(Thread.java:745)
>>>> Driver stacktrace:
>>>>         at org.apache.spark.scheduler.DAGScheduler.org
>>>> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
>>>>         at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
>>>>         at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
>>>>         at
>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>>         at
>>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>>>>         at
>>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
>>>>         at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
>>>>         at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
>>>>         at scala.Option.foreach(Option.scala:257)
>>>>         at
>>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
>>>>         at
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
>>>>         at
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
>>>>         at
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
>>>>         at
>>>> org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>>>         at
>>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
>>>>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
>>>>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
>>>>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
>>>>         at
>>>> org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1314)
>>>>         at
>>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
>>>>         at
>>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
>>>>         at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
>>>>         at org.apache.spark.rdd.RDD.take(RDD.scala:1288)
>>>>         at
>>>> org.apache.spark.rdd.RDD$$anonfun$isEmpty$1.apply$mcZ$sp(RDD.scala:1416)
>>>>         at
>>>> org.apache.spark.rdd.RDD$$anonfun$isEmpty$1.apply(RDD.scala:1416)
>>>>         at
>>>> org.apache.spark.rdd.RDD$$anonfun$isEmpty$1.apply(RDD.scala:1416)
>>>>         at
>>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
>>>>         at
>>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
>>>>         at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
>>>>         at org.apache.spark.rdd.RDD.isEmpty(RDD.scala:1415)
>>>>         at
>>>> com.company.denormalize.Implicits$DStreamMixologistRawSchema$$anonfun$outputParquet$1.apply(Implicits.scala:67)
>>>>         at
>>>> com.company.denormalize.Implicits$DStreamMixologistRawSchema$$anonfun$outputParquet$1.apply(Implicits.scala:47)
>>>>         at
>>>> org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:661)
>>>>         at
>>>> org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:661)
>>>>         at
>>>> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:50)
>>>>         at
>>>> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50)
>>>>         at
>>>> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50)
>>>>         at
>>>> org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426)
>>>>         at
>>>> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:49)
>>>>         at
>>>> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49)
>>>>         at
>>>> org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49)
>>>>         at scala.util.Try$.apply(Try.scala:192)
>>>>         at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
>>>>         at
>>>> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:224)
>>>>         at
>>>> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224)
>>>>         at
>>>> org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224)
>>>>         at
>>>> scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
>>>>
>>>
>>>
>>
>

Reply via email to