Plus, I’m using *Spark 1.5.2*, with *spark-csv 1.3.0*. Also tried HiveContext, but the result is exactly the same.
On Sun, Feb 7, 2016 at 3:44 PM SLiZn Liu <sliznmail...@gmail.com> wrote: > Hi Spark Users Group, > > I have a csv file to analysis with Spark, but I’m troubling with importing > as DataFrame. > > Here’s the minimal reproducible example. Suppose I’m having a > *10(rows)x2(cols)* *space-delimited csv* file, shown as below: > > 1446566430 2015-11-04<SP>00:00:30 > 1446566430 2015-11-04<SP>00:00:30 > 1446566430 2015-11-04<SP>00:00:30 > 1446566430 2015-11-04<SP>00:00:30 > 1446566430 2015-11-04<SP>00:00:30 > 1446566431 2015-11-04<SP>00:00:31 > 1446566431 2015-11-04<SP>00:00:31 > 1446566431 2015-11-04<SP>00:00:31 > 1446566431 2015-11-04<SP>00:00:31 > 1446566431 2015-11-04<SP>00:00:31 > > the <SP> in column 2 represents sub-delimiter within that column, and > this file is stored on HDFS, let’s say the path is hdfs:///tmp/1.csv > > I’m using *spark-csv* to import this file as Spark *DataFrame*: > > sqlContext.read.format("com.databricks.spark.csv") > .option("header", "false") // Use first line of all files as header > .option("inferSchema", "false") // Automatically infer data types > .option("delimiter", " ") > .load("hdfs:///tmp/1.csv") > .show > > Oddly, the output shows only a part of each column: > > [image: Screenshot from 2016-02-07 15-27-51.png] > > and even the boundary of the table wasn’t shown correctly. I also used the > other way to read csv file, by sc.textFile(...).map(_.split(" ")) and > sqlContext.createDataFrame, and the result is the same. Can someone point > me out where I did it wrong? > > — > BR, > Todd Leo > >