These methods are available in Spark 1.6

On Tue, Jan 19, 2016 at 12:18 AM, Roberto Pagliari <
roberto.pagli...@asos.com> wrote:

> With Spark 1.5, the following code:
>
>     from pyspark import SparkContext, SparkConf
>     from pyspark.mllib.recommendation import ALS, Rating
>     r1 = (1, 1, 1.0)
>     r2 = (1, 2, 2.0)
>     r3 = (2, 1, 2.0)
>     ratings = sc.parallelize([r1, r2, r3])
>     model = ALS.trainImplicit(ratings, 1, seed=10)
>
>     res = model.recommendProductsForUsers(2)
>
> raises the error
>
>
> ---------------------------------------------------------------------------
>     AttributeError                            Traceback (most recent call
> last)
>     <ipython-input-8-c65e6875ea5b> in <module>()
>           7 model = ALS.trainImplicit(ratings, 1, seed=10)
>           8
>     ----> 9 res = model.recommendProductsForUsers(2)
>
>     AttributeError: 'MatrixFactorizationModel' object has no attribute
> ‘recommendProductsForUsers'
>
> If the method is not available, is there a workaround with a large number
> of users and products?
>

Reply via email to