You don't have to turn your array into a tuple, but you do need to have a product that wraps it (this is how we get names for the columns).
case class MyData(data: Array[Double]) val df = Seq(MyData(Array(1.0, 2.0, 3.0, 4.0)), ...).toDF() On Mon, Dec 14, 2015 at 9:35 PM, Jeff Zhang <zjf...@gmail.com> wrote: > Please use tuple instead of array. ( the element must implement trait > Product if you want to convert RDD to DF) > > val testvec = Array( (1.0, 2.0, 3.0, 4.0), (5.0, 6.0, 7.0, 8.0)) > > On Tue, Dec 15, 2015 at 1:12 PM, AlexG <swift...@gmail.com> wrote: > >> My attempts to create a dataframe of Array[Doubles], I get an error about >> RDD[Array[Double]] not having a toDF function: >> >> import sqlContext.implicits._ >> val testvec = Array( Array(1.0, 2.0, 3.0, 4.0), Array(5.0, 6.0, 7.0, 8.0)) >> val testrdd = sc.parallelize(testvec) >> testrdd.toDF >> >> gives >> >> <console>:29: error: value toDF is not a member of >> org.apache.spark.rdd.RDD[Array[Double]] >> testrdd.toD >> >> on the other hand, if I make the dataframe more complicated, e.g. >> Tuple2[String, Array[Double]], the transformation goes through: >> >> val testvec = Array( ("row 1", Array(1.0, 2.0, 3.0, 4.0)), ("row 2", >> Array(5.0, 6.0, 7.0, 8.0)) ) >> val testrdd = sc.parallelize(testvec) >> testrdd.toDF >> >> gives >> testrdd: org.apache.spark.rdd.RDD[(String, Array[Double])] = >> ParallelCollectionRDD[1] at parallelize at <console>:29 >> res3: org.apache.spark.sql.DataFrame = [_1: string, _2: array<double>] >> >> What's the cause of this, and how can I get around it to create a >> dataframe >> of Array[Double]? My end goal is to store that dataframe in Parquet (yes, >> I >> do want to store all the values in a single column, not individual >> columns) >> >> I am using Spark 1.5.2 >> >> >> >> >> -- >> View this message in context: >> http://apache-spark-user-list.1001560.n3.nabble.com/how-to-make-a-dataframe-of-Array-Doubles-tp25704.html >> Sent from the Apache Spark User List mailing list archive at Nabble.com. >> >> --------------------------------------------------------------------- >> To unsubscribe, e-mail: user-unsubscr...@spark.apache.org >> For additional commands, e-mail: user-h...@spark.apache.org >> >> > > > -- > Best Regards > > Jeff Zhang >