You may try to set Hadoop conf "parquet.enable.summary-metadata" to false to disable writing Parquet summary files (_metadata and _common_metadata).

By default Parquet writes the summary files by collecting footers of all part-files in the dataset while committing the job. Spark also follows this convention. However, it turned out that the summary files aren't very useful in practice now, unless you have other downstream tools that strictly depend on the summary files. For example, if you don't need schema merging, Spark simply picks a random part-file to discovery the dataset schema. If you need schema merging, Spark has to read footers of all part-files anyway (but in a distributed, parallel way).

Cheng

On 12/3/15 6:11 AM, Don Drake wrote:
Does anyone have any suggestions on creating a large amount of parquet files? Especially in regards to the last phase where it creates the _metadata.

Thanks.

-Don

On Sat, Nov 28, 2015 at 9:02 AM, Don Drake <dondr...@gmail.com <mailto:dondr...@gmail.com>> wrote:

    I have a 2TB dataset that I have in a DataFrame that I am
    attempting to partition by 2 fields and my YARN job seems to write
    the partitioned dataset successfully.  I can see the output in
    HDFS once all Spark tasks are done.

    After the spark tasks are done, the job appears to be running for
    over an hour, until I get the following (full stack trace below):

    java.lang.OutOfMemoryError: GC overhead limit exceeded
            at
    
org.apache.parquet.format.converter.ParquetMetadataConverter.toParquetStatistics(ParquetMetadataConverter.java:238)

    I had set the driver memory to be 20GB.

    I attempted to read in the partitioned dataset and got another
    error saying the /_metadata directory was not a parquet file.  I
    removed the _metadata directory and was able to query the data,
    but it appeared to not use the partitioned directory when I
    attempted to filter the data (it read every directory).

    This is Spark 1.5.2 and I saw the same problem when running the
    code in both Scala and Python.

    Any suggestions are appreciated.

    -Don

    15/11/25 00:00:19 ERROR datasources.InsertIntoHadoopFsRelation:
    Aborting job.
    java.lang.OutOfMemoryError: GC overhead limit exceeded
            at
    
org.apache.parquet.format.converter.ParquetMetadataConverter.toParquetStatistics(ParquetMetadataConverter.java:238)
            at
    
org.apache.parquet.format.converter.ParquetMetadataConverter.addRowGroup(ParquetMetadataConverter.java:167)
            at
    
org.apache.parquet.format.converter.ParquetMetadataConverter.toParquetMetadata(ParquetMetadataConverter.java:79)
            at
    
org.apache.parquet.hadoop.ParquetFileWriter.serializeFooter(ParquetFileWriter.java:405)
            at
    
org.apache.parquet.hadoop.ParquetFileWriter.writeMetadataFile(ParquetFileWriter.java:433)
            at
    
org.apache.parquet.hadoop.ParquetFileWriter.writeMetadataFile(ParquetFileWriter.java:423)
            at
    
org.apache.parquet.hadoop.ParquetOutputCommitter.writeMetaDataFile(ParquetOutputCommitter.java:58)
            at
    
org.apache.parquet.hadoop.ParquetOutputCommitter.commitJob(ParquetOutputCommitter.java:48)
            at
    
org.apache.spark.sql.execution.datasources.BaseWriterContainer.commitJob(WriterContainer.scala:208)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:151)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
            at
    
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108)
            at
    
org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:57)
            at
    
org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:57)
            at
    org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:69)
            at
    
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
            at
    
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
            at
    
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
            at
    org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
            at
    
org.apache.spark.sql.SQLContext$QueryExecution.toRdd$lzycompute(SQLContext.scala:933)
            at
    org.apache.spark.sql.SQLContext$QueryExecution.toRdd(SQLContext.scala:933)
            at
    
org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:197)
            at
    org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:146)
            at
    org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:137)
            at
    org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:304)
            at com.dondrake.qra.ScalaApp$.main(ScalaApp.scala:53)
            at com.dondrake.qra.ScalaApp.main(ScalaApp.scala)
            at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
            at
    
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
            at
    
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    15/11/25 00:00:20 ERROR actor.ActorSystemImpl: exception on LARS?
    timer thread
    java.lang.OutOfMemoryError: GC overhead limit exceeded
            at
    akka.actor.LightArrayRevolverScheduler$$anon$8.nextTick(Scheduler.scala:409)
            at
    akka.actor.LightArrayRevolverScheduler$$anon$8.run(Scheduler.scala:375)
            at java.lang.Thread.run(Thread.java:745)
    15/11/25 00:00:20 ERROR akka.ErrorMonitor: exception on LARS?
    timer thread
    java.lang.OutOfMemoryError: GC overhead limit exceeded
            at
    akka.actor.LightArrayRevolverScheduler$$anon$8.nextTick(Scheduler.scala:409)
            at
    akka.actor.LightArrayRevolverScheduler$$anon$8.run(Scheduler.scala:375)
            at java.lang.Thread.run(Thread.java:745)
    15/11/25 00:00:20 INFO actor.ActorSystemImpl: starting new LARS thread
    15/11/25 00:00:20 ERROR akka.ErrorMonitor: Uncaught fatal error
    from thread [sparkDriver-scheduler-1] shutting down ActorSystem
    [sparkDriver]
    java.lang.OutOfMemoryError: GC overhead limit exceeded
            at
    akka.actor.LightArrayRevolverScheduler$$anon$8.nextTick(Scheduler.scala:409)
            at
    akka.actor.LightArrayRevolverScheduler$$anon$8.run(Scheduler.scala:375)
            at java.lang.Thread.run(Thread.java:745)
    15/11/25 00:00:20 ERROR actor.ActorSystemImpl: Uncaught fatal
    error from thread [sparkDriver-scheduler-1] shutting down
    ActorSystem [sparkDriver]
    java.lang.OutOfMemoryError: GC overhead limit exceeded
            at
    akka.actor.LightArrayRevolverScheduler$$anon$8.nextTick(Scheduler.scala:409)
            at
    akka.actor.LightArrayRevolverScheduler$$anon$8.run(Scheduler.scala:375)
            at java.lang.Thread.run(Thread.java:745)
    15/11/25 00:00:20 WARN akka.AkkaRpcEndpointRef: Error sending
    message [message = BlockManagerHeartbeat(BlockManagerId(1453,
    dd1067.dondrake.com <http://dd1067.dondrake.com>, 42479))] i
    n 1 attempts
    org.apache.spark.rpc.RpcTimeoutException:
    Recipient[Actor[akka://sparkDriver/user/BlockManagerMaster#1347881120]]
    had already been terminated.. This timeout
    is controlled by BlockManagerHeartbeat
            at org.apache.spark.rpc.RpcTimeout.org
    
<http://org.apache.spark.rpc.RpcTimeout.org>$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcEnv.scala:214)
            at
    
org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcEnv.scala:229)
            at
    
org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcEnv.scala:225)
            at
    
scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
            at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:185)
            at scala.util.Try$.apply(Try.scala:161)
            at scala.util.Failure.recover(Try.scala:185)
            at
    scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
            at
    scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
            at
    scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
            at
    
org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
            at
    
scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
            at
    scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
            at
    
scala.concurrent.impl.Promise$DefaultPromise.scala$concurrent$impl$Promise$DefaultPromise$$dispatchOrAddCallback(Promise.scala:280)
            at
    scala.concurrent.impl.Promise$DefaultPromise.onComplete(Promise.scala:270)
            at scala.concurrent.Future$class.recover(Future.scala:324)
            at
    scala.concurrent.impl.Promise$DefaultPromise.recover(Promise.scala:153)
            at
    org.apache.spark.rpc.akka.AkkaRpcEndpointRef.ask(AkkaRpcEnv.scala:319)
            at
    org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:100)
            at
    
org.apache.spark.scheduler.DAGScheduler.executorHeartbeatReceived(DAGScheduler.scala:194)
            at
    
org.apache.spark.scheduler.TaskSchedulerImpl.executorHeartbeatReceived(TaskSchedulerImpl.scala:386)
            at
    
org.apache.spark.HeartbeatReceiver$$anonfun$receiveAndReply$1$$anon$2$$anonfun$run$2.apply$mcV$sp(HeartbeatReceiver.scala:128)
            at
    org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1185)
            at
    
org.apache.spark.HeartbeatReceiver$$anonfun$receiveAndReply$1$$anon$2.run(HeartbeatReceiver.scala:127)
            at
    java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
            at java.util.concurrent.FutureTask.run(FutureTask.java:266)
            at
    
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
            at
    
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
            at
    
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
            at
    
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
            at java.lang.Thread.run(Thread.java:745)
    Caused by: akka.pattern.AskTimeoutException:
    Recipient[Actor[akka://sparkDriver/user/BlockManagerMaster#1347881120]]
    had already been terminated.
            at
    akka.pattern.AskableActorRef$.ask$extension(AskSupport.scala:132)
            at
    org.apache.spark.rpc.akka.AkkaRpcEndpointRef.ask(AkkaRpcEnv.scala:307)
            ... 13 more
    15/11/25 00:00:20 INFO
    remote.RemoteActorRefProvider$RemotingTerminator: Shutting down
    remote daemon.
    15/11/25 00:00:20 INFO
    remote.RemoteActorRefProvider$RemotingTerminator: Remote daemon
    shut down; proceeding with flushing remote transports.
    15/11/25 00:00:20 INFO
    remote.RemoteActorRefProvider$RemotingTerminator: Remoting shut down.
    15/11/25 00:00:20 ERROR
    datasources.DynamicPartitionWriterContainer: Job
    job_201511242138_0000 aborted.
    Exception in thread "main" org.apache.spark.SparkException: Job
    aborted.
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:156)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
            at
    
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108)
            at
    
org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:57)
            at
    
org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:57)
            at
    org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:69)
            at
    
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
            at
    
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
            at
    
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
            at
    org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
            at
    
org.apache.spark.sql.SQLContext$QueryExecution.toRdd$lzycompute(SQLContext.scala:933)
            at
    org.apache.spark.sql.SQLContext$QueryExecution.toRdd(SQLContext.scala:933)
            at
    
org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:197)
            at
    org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:146)
            at
    org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:137)
            at
    org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:304)
            at com.dondrake.qra.ScalaApp$.main(ScalaApp.scala:53)
            at com.dondrake.qra.ScalaApp.main(ScalaApp.scala)
            at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
            at
    
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
            at
    
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
            at java.lang.reflect.Method.invoke(Method.java:497)
            at
    
org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:674)
            at
    org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
            at
    org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
            at
    org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
            at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
    Caused by: java.lang.OutOfMemoryError: GC overhead limit exceeded
            at
    
org.apache.parquet.format.converter.ParquetMetadataConverter.toParquetStatistics(ParquetMetadataConverter.java:238)
            at
    
org.apache.parquet.format.converter.ParquetMetadataConverter.addRowGroup(ParquetMetadataConverter.java:167)
            at
    
org.apache.parquet.format.converter.ParquetMetadataConverter.toParquetMetadata(ParquetMetadataConverter.java:79)
            at
    
org.apache.parquet.hadoop.ParquetFileWriter.serializeFooter(ParquetFileWriter.java:405)
            at
    
org.apache.parquet.hadoop.ParquetFileWriter.writeMetadataFile(ParquetFileWriter.java:433)
            at
    
org.apache.parquet.hadoop.ParquetFileWriter.writeMetadataFile(ParquetFileWriter.java:423)
            at
    
org.apache.parquet.hadoop.ParquetOutputCommitter.writeMetaDataFile(ParquetOutputCommitter.java:58)
            at
    
org.apache.parquet.hadoop.ParquetOutputCommitter.commitJob(ParquetOutputCommitter.java:48)
            at
    
org.apache.spark.sql.execution.datasources.BaseWriterContainer.commitJob(WriterContainer.scala:208)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:151)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
            at
    
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
            at
    
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108)
            at
    
org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:57)
            at
    
org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:57)
            at
    org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:69)
            at
    
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
            at
    
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
            at
    
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
            at
    org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
            at
    
org.apache.spark.sql.SQLContext$QueryExecution.toRdd$lzycompute(SQLContext.scala:933)
            at
    org.apache.spark.sql.SQLContext$QueryExecution.toRdd(SQLContext.scala:933)
            at
    
org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:197)
            at
    org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:146)
            at
    org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:137)
            at
    org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:304)
            at com.dondrake.qra.ScalaApp$.main(ScalaApp.scala:53)
            at com.dondrake.qra.ScalaApp.main(ScalaApp.scala)
            at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
            at
    
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
            at
    
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    15/11/25 00:00:20 INFO spark.SparkContext: Invoking stop() from
    shutdown hook
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/static/sql,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/SQL/execution/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/SQL/execution,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/SQL/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/SQL,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/metrics/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/stages/stage/kill,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/api,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/static,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/executors/threadDump/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/executors/threadDump,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/executors/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/executors,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/environment/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/environment,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/storage/rdd/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/storage/rdd,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/storage/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/storage,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/stages/pool/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/stages/pool,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/stages/stage/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/stages/stage,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/stages/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/stages,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/jobs/job/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/jobs/job,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/jobs/json,null}
    15/11/25 00:00:20 INFO handler.ContextHandler: stopped
    o.s.j.s.ServletContextHandler{/jobs,null}
    15/11/25 00:00:20 INFO ui.SparkUI: Stopped Spark web UI at
    http://10.195.208.41:4040
    15/11/25 00:00:20 INFO scheduler.DAGScheduler: Stopping DAGScheduler
    15/11/25 00:00:20 INFO cluster.YarnClientSchedulerBackend:
    Shutting down all executors
    15/11/25 00:00:20 INFO cluster.YarnClientSchedulerBackend:
    Interrupting monitor thread
    15/11/25 00:00:20 WARN akka.AkkaRpcEndpointRef: Error sending
    message [message = StopExecutors] in 1 attempts
    org.apache.spark.rpc.RpcTimeoutException:
    Recipient[Actor[akka://sparkDriver/user/CoarseGrainedScheduler#1432624242]]
    had already been terminated.. This tim
    eout is controlled by spark.network.timeout
            at org.apache.spark.rpc.RpcTimeout.org
    
<http://org.apache.spark.rpc.RpcTimeout.org>$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcEnv.scala:214)
            at
    
org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcEnv.scala:229)
            at
    
org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcEnv.scala:225)
            at
    
scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
            at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:185)
            at scala.util.Try$.apply(Try.scala:161)
            at scala.util.Failure.recover(Try.scala:185)
            at
    scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
            at
    scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
            at
    scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
            at
    
org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
            at
    
scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
            at
    scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
            at
    
scala.concurrent.impl.Promise$DefaultPromise.scala$concurrent$impl$Promise$DefaultPromise$$dispatchOrAddCallback(Promise.scala:280)
            at
    scala.concurrent.impl.Promise$DefaultPromise.onComplete(Promise.scala:270)
            at scala.concurrent.Future$class.recover(Future.scala:324)
            at
    scala.concurrent.impl.Promise$DefaultPromise.recover(Promise.scala:153)
            at
    org.apache.spark.rpc.akka.AkkaRpcEndpointRef.ask(AkkaRpcEnv.scala:319)
            at
    org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:100)
            at
    org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:77)
            at
    
org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.stopExecutors(CoarseGrainedSchedulerBackend.scala:274)
            at
    
org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.stop(CoarseGrainedSchedulerBackend.scala:283)
            at
    
org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.stop(YarnClientSchedulerBackend.scala:180)
            at
    
org.apache.spark.scheduler.TaskSchedulerImpl.stop(TaskSchedulerImpl.scala:439)
            at
    org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1439)
            at
    
org.apache.spark.SparkContext$$anonfun$stop$7.apply$mcV$sp(SparkContext.scala:1724)
            at
    org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1185)
            at org.apache.spark.SparkContext.stop(SparkContext.scala:1723)
            at
    
org.apache.spark.SparkContext$$anonfun$3.apply$mcV$sp(SparkContext.scala:587)
            at
    org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:264)
            at
    
org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ShutdownHookManager.scala:234)
            at
    
org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:234)
            at
    
org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1$$anonfun$apply$mcV$sp$1.apply(ShutdownHookManager.scala:234)
            at
    org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1699)
            at
    
org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply$mcV$sp(ShutdownHookManager.scala:234)
            at
    
org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:234)
            at
    
org.apache.spark.util.SparkShutdownHookManager$$anonfun$runAll$1.apply(ShutdownHookManager.scala:234)
            at scala.util.Try$.apply(Try.scala:161)
            at
    
org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:234)
            at
    
org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:216)
            at
    
org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:54)
    Caused by: akka.pattern.AskTimeoutException:
    Recipient[Actor[akka://sparkDriver/user/CoarseGrainedScheduler#1432624242]]
    had already been terminated.
            at
    akka.pattern.AskableActorRef$.ask$extension(AskSupport.scala:132)
            at
    org.apache.spark.rpc.akka.AkkaRpcEndpointRef.ask(AkkaRpcEnv.scala:307)
            ... 23 more


-- Donald Drake
    Drake Consulting
    http://www.drakeconsulting.com/
    https://twitter.com/dondrake <http://www.MailLaunder.com/>
    800-733-2143 <tel:800-733-2143>




--
Donald Drake
Drake Consulting
http://www.drakeconsulting.com/
https://twitter.com/dondrake <http://www.MailLaunder.com/>
800-733-2143

Reply via email to