An interesting compaction approach of small files is discussed recently
http://blog.cloudera.com/blog/2015/11/how-to-ingest-and-query-fast-data-with-impala-without-kudu/


AFAIK Spark supports views too.


-- 
Ruslan Dautkhanov

On Thu, Nov 26, 2015 at 10:43 AM, Nezih Yigitbasi <
nyigitb...@netflix.com.invalid> wrote:

> Hi Spark people,
> I have a Hive table that has a lot of small parquet files and I am
> creating a data frame out of it to do some processing, but since I have a
> large number of splits/files my job creates a lot of tasks, which I don't
> want. Basically what I want is the same functionality that Hive provides,
> that is, to combine these small input splits into larger ones by specifying
> a max split size setting. Is this currently possible with Spark?
>
> I look at coalesce() but with coalesce I can only control the number
> of output files not their sizes. And since the total input dataset size
> can vary significantly in my case, I cannot just use a fixed partition
> count as the size of each output file can get very large. I then looked for
> getting the total input size from an rdd to come up with some heuristic to
> set the partition count, but I couldn't find any ways to do it (without
> modifying the spark source).
>
> Any help is appreciated.
>
> Thanks,
> Nezih
>
> PS: this email is the same as my previous email as I learned that my
> previous email ended up as spam for many people since I sent it through
> nabble, sorry for the double post.
>

Reply via email to