I see - your HBase cluster is separate from Mesos cluster.
I somehow got (incorrect) impression that HBase cluster runs on Mesos.

On Tue, Nov 17, 2015 at 7:53 PM, 임정택 <kabh...@gmail.com> wrote:

> Ted,
>
> Could you elaborate, please?
>
> I maintain separated HBase cluster and Mesos cluster for some reasons, and
> I just can make it work via spark-submit or spark-shell / zeppelin with
> newly initialized SparkContext.
>
> Thanks,
> Jungtaek Lim (HeartSaVioR)
>
> 2015-11-17 22:17 GMT+09:00 Ted Yu <yuzhih...@gmail.com>:
>
>> I am a bit curious:
>> Hbase depends on hdfs.
>> Has hdfs support for Mesos been fully implemented ?
>>
>> Last time I checked, there was still work to be done.
>>
>> Thanks
>>
>> On Nov 17, 2015, at 1:06 AM, 임정택 <kabh...@gmail.com> wrote:
>>
>> Oh, one thing I missed is, I built Spark 1.4.1 Cluster with 6 nodes of
>> Mesos 0.22.1 H/A (via ZK) cluster.
>>
>> 2015-11-17 18:01 GMT+09:00 임정택 <kabh...@gmail.com>:
>>
>>> Hi all,
>>>
>>> I'm evaluating zeppelin to run driver which interacts with HBase.
>>> I use fat jar to include HBase dependencies, and see failures on
>>> executor level.
>>> I thought it is zeppelin's issue, but it fails on spark-shell, too.
>>>
>>> I loaded fat jar via --jars option,
>>>
>>> > ./bin/spark-shell --jars hbase-included-assembled.jar
>>>
>>> and run driver code using provided SparkContext instance, and see
>>> failures from spark-shell console and executor logs.
>>>
>>> below is stack traces,
>>>
>>> org.apache.spark.SparkException: Job aborted due to stage failure: Task 55 
>>> in stage 0.0 failed 4 times, most recent failure: Lost task 55.3 in stage 
>>> 0.0 (TID 281, <svr hostname>): java.lang.NoClassDefFoundError: Could not 
>>> initialize class org.apache.hadoop.hbase.client.HConnectionManager
>>>     at org.apache.hadoop.hbase.client.HTable.<init>(HTable.java:197)
>>>     at org.apache.hadoop.hbase.client.HTable.<init>(HTable.java:159)
>>>     at 
>>> org.apache.hadoop.hbase.mapreduce.TableInputFormat.setConf(TableInputFormat.java:101)
>>>     at 
>>> org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:128)
>>>     at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:104)
>>>     at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:66)
>>>     at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
>>>     at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
>>>     at 
>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>>>     at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
>>>     at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
>>>     at 
>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70)
>>>     at 
>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>>>     at org.apache.spark.scheduler.Task.run(Task.scala:70)
>>>     at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>>>     at 
>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>>     at 
>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>>     at java.lang.Thread.run(Thread.java:745)
>>>
>>> Driver stacktrace:
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1273)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1264)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1263)
>>>     at 
>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>     at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1263)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>>>     at scala.Option.foreach(Option.scala:236)
>>>     at 
>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730)
>>>     at 
>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1457)
>>>     at 
>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1418)
>>>     at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>>
>>>
>>> 15/11/16 18:59:57 ERROR Executor: Exception in task 14.0 in stage 0.0 (TID 
>>> 14)
>>> java.lang.ExceptionInInitializerError
>>>     at org.apache.hadoop.hbase.client.HTable.<init>(HTable.java:197)
>>>     at org.apache.hadoop.hbase.client.HTable.<init>(HTable.java:159)
>>>     at 
>>> org.apache.hadoop.hbase.mapreduce.TableInputFormat.setConf(TableInputFormat.java:101)
>>>     at 
>>> org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:128)
>>>     at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:104)
>>>     at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:66)
>>>     at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
>>>     at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
>>>     at 
>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>>>     at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
>>>     at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
>>>     at 
>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70)
>>>     at 
>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>>>     at org.apache.spark.scheduler.Task.run(Task.scala:70)
>>>     at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>>>     at 
>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>>     at 
>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>>     at java.lang.Thread.run(Thread.java:745)
>>> Caused by: java.lang.RuntimeException: hbase-default.xml file seems to be 
>>> for and old version of HBase (null), this version is 0.98.6-cdh5.2.0
>>>     at 
>>> org.apache.hadoop.hbase.HBaseConfiguration.checkDefaultsVersion(HBaseConfiguration.java:73)
>>>     at 
>>> org.apache.hadoop.hbase.HBaseConfiguration.addHbaseResources(HBaseConfiguration.java:105)
>>>     at 
>>> org.apache.hadoop.hbase.HBaseConfiguration.create(HBaseConfiguration.java:116)
>>>     at 
>>> org.apache.hadoop.hbase.client.HConnectionManager.<clinit>(HConnectionManager.java:222)
>>>     ... 18 more
>>>
>>>
>>> Please note that it runs smoothly on spark-submit.
>>>
>>> Btw, if issue is that hbase-default.xml is not properly loaded (maybe
>>> because of classloader), it seems to run properly on driver level.
>>>
>>> import org.apache.hadoop.hbase.HBaseConfiguration
>>> val conf = HBaseConfiguration.create()
>>> println(conf.get("hbase.defaults.for.version"))
>>>
>>> It prints "0.98.6-cdh5.2.0".
>>>
>>> I'm using Spark-1.4.1-hadoop-2.4-bin, and zeppelin 0.5.5, and HBase
>>> 0.98.6-CDH5.2.0.
>>>
>>> Thanks in advance!
>>>
>>> Best,
>>> Jungtaek Lim (HeartSaVioR)
>>>
>>
>>
>>
>> --
>> Name : 임 정택
>> Blog : http://www.heartsavior.net / http://dev.heartsavior.net
>> Twitter : http://twitter.com/heartsavior
>> LinkedIn : http://www.linkedin.com/in/heartsavior
>>
>>
>
>
> --
> Name : 임 정택
> Blog : http://www.heartsavior.net / http://dev.heartsavior.net
> Twitter : http://twitter.com/heartsavior
> LinkedIn : http://www.linkedin.com/in/heartsavior
>

Reply via email to