I meet a situation:
When I use 
val a = rdd.pipe("./my_cpp_program").persist()
a.count()  // just use it to persist a
val b = a.map(s => (s, 1)).reduceByKey().count()
it 's so fast

but when I use
val b = rdd.pipe("./my_cpp_program").map(s => (s, 1)).reduceByKey().count()
it is so slow....
and there are many such log in my executors:
15/10/31 19:53:58 INFO collection.ExternalSorter: Thread 78 spilling
in-memory map of 633.1 MB to disk (8 times so far)
15/10/31 19:54:14 INFO collection.ExternalSorter: Thread 74 spilling
in-memory map of 633.1 MB to disk (8 times so far)
15/10/31 19:54:17 INFO collection.ExternalSorter: Thread 79 spilling
in-memory map of 633.1 MB to disk (8 times so far)
15/10/31 19:54:29 INFO collection.ExternalSorter: Thread 77 spilling
in-memory map of 633.1 MB to disk (8 times so far)
15/10/31 19:54:50 INFO collection.ExternalSorter: Thread 76 spilling
in-memory map of 633.1 MB to disk (9 times so far)



--
View this message in context: 
http://apache-spark-user-list.1001560.n3.nabble.com/job-hangs-when-using-pipe-with-reduceByKey-tp25242.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
For additional commands, e-mail: user-h...@spark.apache.org

Reply via email to