Hi Sampo,

There is a sliding method you could try inside the 
org.apache.spark.mllib.rdd.RDDFunctions package, though it’s DeveloperApi stuff 
(https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.rdd.RDDFunctions)



import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.rdd.RDDFunctions._

object Test {

  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf()
    sparkConf.setMaster("local").setAppName("sandbox")

    val sc = new SparkContext(sparkConf)

    val arr = Array((1, "A"), (8, "D"), (7, "C"), (3, "B"), (9, "E"))
    val rdd = sc.parallelize(arr)
    val sorted = rdd.sortByKey(true)

    print(sorted.sliding(2).map(x => (x(0), x(1))).collect().toSeq)

    sc.stop()
  }
}



prints



WrappedArray(((1,A),(3,B)), ((3,B),(7,C)), ((7,C),(8,D)), ((8,D),(9,E)))



Otherwise you could try to convert your RDD to a DataFrame then use windowing 
functions in SparkSQL with the LEAD/LAG functions.



Best regards,

Fanilo



De : Dylan Hogg [mailto:dylanh...@gmail.com]
Envoyé : jeudi 22 octobre 2015 13:44
À : Sampo Niskanen
Cc : user
Objet : Re: Analyzing consecutive elements

Hi Sampo,
You could try zipWithIndex followed by a self join with shifted index values 
like this:

val arr = Array((1, "A"), (8, "D"), (7, "C"), (3, "B"), (9, "E"))
val rdd = sc.parallelize(arr)
val sorted = rdd.sortByKey(true)

val zipped = sorted.zipWithIndex.map(x => (x._2, x._1))
val pairs = zipped.join(zipped.map(x => (x._1 - 1, x._2))).sortBy(_._1)
Which produces the consecutive elements as pairs in the RDD for further 
processing:
(0,((1,A),(3,B)))
(1,((3,B),(7,C)))
(2,((7,C),(8,D)))
(3,((8,D),(9,E)))
There are probably more efficient ways to do this, but if your dataset isn't 
too big it should work for you.
Cheers,
Dylan.


On 22 October 2015 at 17:35, Sampo Niskanen 
<sampo.niska...@wellmo.com<mailto:sampo.niska...@wellmo.com>> wrote:
Hi,

I have analytics data with timestamps on each element.  I'd like to analyze 
consecutive elements using Spark, but haven't figured out how to do this.

Essentially what I'd want is a transform from a sorted RDD [A, B, C, D, E] to 
an RDD [(A,B), (B,C), (C,D), (D,E)].  (Or some other way to analyze 
time-related elements.)

How can this be achieved?


    Sampo Niskanen
    Lead developer / Wellmo

    sampo.niska...@wellmo.com<mailto:sampo.niska...@wellmo.com>
    +358 40 820 5291



________________________________

Ce message et les pièces jointes sont confidentiels et réservés à l'usage 
exclusif de ses destinataires. Il peut également être protégé par le secret 
professionnel. Si vous recevez ce message par erreur, merci d'en avertir 
immédiatement l'expéditeur et de le détruire. L'intégrité du message ne pouvant 
être assurée sur Internet, la responsabilité de Worldline ne pourra être 
recherchée quant au contenu de ce message. Bien que les meilleurs efforts 
soient faits pour maintenir cette transmission exempte de tout virus, 
l'expéditeur ne donne aucune garantie à cet égard et sa responsabilité ne 
saurait être recherchée pour tout dommage résultant d'un virus transmis.

This e-mail and the documents attached are confidential and intended solely for 
the addressee; it may also be privileged. If you receive this e-mail in error, 
please notify the sender immediately and destroy it. As its integrity cannot be 
secured on the Internet, the Worldline liability cannot be triggered for the 
message content. Although the sender endeavours to maintain a computer 
virus-free network, the sender does not warrant that this transmission is 
virus-free and will not be liable for any damages resulting from any virus 
transmitted.

Reply via email to