Hi,

Currently I have a job that has spills to disk and memory due to usage of
reduceByKey and a lot of intermediate data in reduceByKey that gets
shuffled.

How to use custom partitioner in Spark Streaming for  an intermediate stage
so that  the next stage that uses reduceByKey does not have to do shuffles?

Thanks,
Swetha



--
View this message in context: 
http://apache-spark-user-list.1001560.n3.nabble.com/Job-splling-to-disk-and-memory-in-Spark-Streaming-tp25149.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
For additional commands, e-mail: user-h...@spark.apache.org

Reply via email to