Hi,

I am getting some very strange results, where I get different results based
on whether or not I call persist() on a data frame or not before
materialising it.

There's probably something obvious I am missing, as only very simple
operations are involved here. Any help with this would be greatly
appreciated. I have a simple data-frame with IDs and values:

    data_dict = {'id': {k: str(k) for k in range(99)}, 'value':
dict(enumerate(['A'] * 4 + ['B'] * 46 + ['C'] * 49))}
    df_small = pd.DataFrame(data_dict)
    records = sqlContext.createDataFrame(df_small)
    records.printSchema()
   
    # root
    # |-- id: string (nullable = true)
    # |-- value: string (nullable = true)

Now, I left outer join over the IDs -- here, using a dummy constant column
on the right instead of a separate data-frame (enough to reproduce my
issue):

    unique_ids = records.select("id").dropDuplicates()
    id_names = unique_ids.select(F.col("id").alias("id_join"),
F.lit("xxx").alias("id_name"))
   
    df_joined = records.join(id_names, records['id'] == id_names['id_join'],
"left_outer").drop("id_join")

At this point, *doing a show on df_joined* indicates all is fine: all
records are there as expected, for instance:

    df_joined[(df_joined['id'] > 60) & (df_joined['id'] < 70)].show()
    +---+-----+-------+
    | id|value|id_name|
    +---+-----+-------+
    | 61|    C|    xxx|
    | 62|    C|    xxx|
    | 63|    C|    xxx|
    | 64|    C|    xxx|
    ...

However, if I filter for a given value and then group by ID, I do not get
back all of the groups:

    def print_unique_ids(df):
       filtered = df[df["value"] == "C"]
       plan = filtered.groupBy("id").count().select("id")
       unique_ids = list(plan.toPandas()["id"])
       
       print "{0} IDs: {1}\n".format(len(unique_ids), sorted(unique_ids))
       print plan.rdd.toDebugString() + "\n"
   
    print_unique_ids(df_joined.unpersist())
    print_unique_ids(df_joined.persist())
    
    49 IDs: [u'50', u'51', u'52', u'53', u'54', u'55', u'56', u'57', u'58',
u'59', u'60', u'61', u'62', u'63', u'64', u'65', u'66', u'67', u'68', u'69',
u'70', u'71', u'72', u'73', u'74', u'75', u'76', u'77', u'78', u'79', u'80',
u'81', u'82', u'83', u'84', u'85', u'86', u'87', u'88', u'89', u'90', u'91',
u'92', u'93', u'94', u'95', u'96', u'97', u'98']
    
    46 IDs: [u'50', u'51', u'52', u'53', u'54', u'55', u'56', u'57', u'58',
u'59', u'60', u'61', u'62', u'66', u'67', u'68', u'69', u'70', u'71', u'72',
u'73', u'74', u'75', u'76', u'77', u'78', u'79', u'80', u'81', u'82', u'83',
u'84', u'85', u'86', u'87', u'88', u'89', u'90', u'91', u'92', u'93', u'94',
u'95', u'96', u'97', u'98']

Note how here IDs 43, 44, 45 are missing when persist() has been called. The
output is correct if the data-frame has not been marked for persistance, but
incorrect after the call to persist.

When persist() has been called, Tungsten seems to be involved, but not if
the data-frame has not been persisted. I am including the full outputs of
toDebugString below.

Has anyone any idea what is going on here?

In case this helps: I see no issue if I don't do the dummy join, or if I
don't filter for value == "C". I have a default spark config, besides
"spark.shuffle.consolidateFiles=true", and spark 1.5.1.

Thanks a lot!

- Without persist:

(200) MapPartitionsRDD[26] at javaToPython at
NativeMethodAccessorImpl.java:-2 []
  |   MapPartitionsRDD[25] at javaToPython at
NativeMethodAccessorImpl.java:-2 []
  |   MapPartitionsWithPreparationRDD[22] at toPandas at
<ipython-input-2-xxx>:25 []
  |   MapPartitionsWithPreparationRDD[21] at toPandas at
<ipython-input-2-xxx>:25 []
  |   MapPartitionsRDD[20] at toPandas at <ipython-input-2-xxx>:25 []
  |   ZippedPartitionsRDD2[19] at toPandas at <ipython-input-2-xxx>:25 []
  |   MapPartitionsWithPreparationRDD[9] at toPandas at
<ipython-input-2-xxx>:25 []
  |   ShuffledRowRDD[8] at toPandas at <ipython-input-2-xxx>:25 []
  +-(2) MapPartitionsRDD[7] at toPandas at <ipython-input-2-xxx>:25 []
     |  MapPartitionsRDD[6] at toPandas at <ipython-input-2-xxx>:25 []
     |  MapPartitionsRDD[5] at toPandas at <ipython-input-2-xxx>:25 []
     |  MapPartitionsRDD[4] at applySchemaToPythonRDD at
NativeMethodAccessorImpl.java:-2 []
     |  MapPartitionsRDD[3] at map at SerDeUtil.scala:100 []
     |  MapPartitionsRDD[2] at mapPartitions at SerDeUtil.scala:147 []
     |  PythonRDD[1] at RDD at PythonRDD.scala:43 []
     |  ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:423 []
  |   MapPartitionsWithPreparationRDD[18] at toPandas at
<ipython-input-2-xxx>:25 []
  |   ShuffledRowRDD[17] at toPandas at <ipython-input-2-xxx>:25 []
  +-(200) MapPartitionsRDD[16] at toPandas at <ipython-input-2-xxx>:25 []
      |   MapPartitionsRDD[15] at toPandas at <ipython-input-2-xxx>:25 []
      |   MapPartitionsWithPreparationRDD[14] at toPandas at
<ipython-input-2-xxx>:25 []
      |   ShuffledRowRDD[13] at toPandas at <ipython-input-2-xxx>:25 []
      +-(2) MapPartitionsRDD[12] at toPandas at <ipython-input-2-xxx>:25 []
         |  MapPartitionsWithPreparationRDD[11] at toPandas at
<ipython-input-2-xxx>:25 []
         |  MapPartitionsRDD[10] at toPandas at <ipython-input-2-xxx>:25 []
         |  MapPartitionsRDD[4] at applySchemaToPythonRDD at
NativeMethodAccessorImpl.java:-2 []
         |  MapPartitionsRDD[3] at map at SerDeUtil.scala:100 []
         |  MapPartitionsRDD[2] at mapPartitions at SerDeUtil.scala:147 []
         |  PythonRDD[1] at RDD at PythonRDD.scala:43 []
         |  ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:423
[]
         
- With persist:

(200) MapPartitionsRDD[52] at javaToPython at
NativeMethodAccessorImpl.java:-2 []
  |   MapPartitionsRDD[51] at javaToPython at
NativeMethodAccessorImpl.java:-2 []
  |   MapPartitionsWithPreparationRDD[48] at toPandas at
<ipython-input-2-xxx>:25 []
  |   ShuffledRowRDD[47] at toPandas at <ipython-input-2-xxx>:25 []
  +-(200) MapPartitionsRDD[46] at toPandas at <ipython-input-2-xxx>:25 []
      |   MapPartitionsWithPreparationRDD[45] at toPandas at
<ipython-input-2-xxx>:25 []
      |   MapPartitionsRDD[44] at toPandas at <ipython-input-2-xxx>:25 []
      |   MapPartitionsRDD[43] at toPandas at <ipython-input-2-xxx>:25 []
      |   TungstenProject [id#0,value#1,id_name#3]
 SortMergeOuterJoin [id#0], [id_join#2], LeftOuter, None
  TungstenSort [id#0 ASC], false, 0
   TungstenExchange hashpartitioning(id#0)
    ConvertToUnsafe
     Scan PhysicalRDD[id#0,value#1]
  TungstenSort [id_join#2 ASC], false, 0
   TungstenExchange hashpartitioning(id_join#2)
    TungstenProject [id#0 AS id_join#2,xxx AS id_name#3]
     TungstenAggregate(key=[id#0], functions=[], output=[id#0])
      TungstenExchange hashpartitioning(id#0)
       TungstenAggregate(key=[id#0], functions=[], output=[id#0])
        TungstenProject [id#0]
         Scan PhysicalRDD[id#0,value#1]
 MapPartitionsRDD[42] at persist at NativeMethodAccessorImpl.java:-2 []
      |       CachedPartitions: 200; MemorySize: 54.0 KB;
ExternalBlockStoreSize: 0.0 B; DiskSize: 0.0 B
      |   MapPartitionsRDD[41] at persist at
NativeMethodAccessorImpl.java:-2 []
      |   ZippedPartitionsRDD2[40] at persist at
NativeMethodAccessorImpl.java:-2 []
      |   MapPartitionsWithPreparationRDD[30] at persist at
NativeMethodAccessorImpl.java:-2 []
      |   ShuffledRowRDD[29] at persist at NativeMethodAccessorImpl.java:-2
[]
      +-(2) MapPartitionsRDD[28] at persist at
NativeMethodAccessorImpl.java:-2 []
         |  MapPartitionsRDD[27] at persist at
NativeMethodAccessorImpl.java:-2 []
         |  MapPartitionsRDD[4] at applySchemaToPythonRDD at
NativeMethodAccessorImpl.java:-2 []
         |  MapPartitionsRDD[3] at map at SerDeUtil.scala:100 []
         |  MapPartitionsRDD[2] at mapPartitions at SerDeUtil.scala:147 []
         |  PythonRDD[1] at RDD at PythonRDD.scala:43 []
         |  ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:423
[]
      |   MapPartitionsWithPreparationRDD[39] at persist at
NativeMethodAccessorImpl.java:-2 []
      |   ShuffledRowRDD[38] at persist at NativeMethodAccessorImpl.java:-2
[]
      +-(200) MapPartitionsRDD[37] at persist at
NativeMethodAccessorImpl.java:-2 []
          |   MapPartitionsRDD[36] at persist at
NativeMethodAccessorImpl.java:-2 []
          |   MapPartitionsWithPreparationRDD[35] at persist at
NativeMethodAccessorImpl.java:-2 []
          |   ShuffledRowRDD[34] at persist at
NativeMethodAccessorImpl.java:-2 []
          +-(2) MapPartitionsRDD[33] at persist at
NativeMethodAccessorImpl.java:-2 []
             |  MapPartitionsWithPreparationRDD[32] at persist at
NativeMethodAccessorImpl.java:-2 []
             |  MapPartitionsRDD[31] at persist at
NativeMethodAccessorImpl.java:-2 []
             |  MapPartitionsRDD[4] at applySchemaToPythonRDD at
NativeMethodAccessorImpl.java:-2 []
             |  MapPartitionsRDD[3] at map at SerDeUtil.scala:100 []
             |  MapPartitionsRDD[2] at mapPartitions at SerDeUtil.scala:147
[]
             |  PythonRDD[1] at RDD at PythonRDD.scala:43 []
             |  ParallelCollectionRDD[0] at parallelize at
PythonRDD.scala:423 []






--
View this message in context: 
http://apache-spark-user-list.1001560.n3.nabble.com/pyspark-results-differ-based-on-whether-persist-has-been-called-tp25121.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
For additional commands, e-mail: user-h...@spark.apache.org

Reply via email to