I was able to get pass this issue. I was pointing the SSL port whereas SimpleConsumer should point to the PLAINTEXT port. But after fixing that I am getting the following error:
Exception in thread "main" org.apache.spark.SparkException: java.nio.BufferUnderflowException at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$checkErrors$1.apply(KafkaCluster.scala:366) at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$checkErrors$1.apply(KafkaCluster.scala:366) at scala.util.Either.fold(Either.scala:97) at org.apache.spark.streaming.kafka.KafkaCluster$.checkErrors(KafkaCluster.scala:365) at org.apache.spark.streaming.kafka.KafkaUtils$.createDirectStream(KafkaUtils.scala:309) at org.ofe.weve.test.KafkaTest$.setupProcessingContext(KafkaTest.scala:36) at org.ofe.weve.test.KafkaTest$.main(KafkaTest.scala:59) at org.ofe.weve.test.KafkaTest.main(KafkaTest.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:497) at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Thanks, Sourabh On Thu, Sep 24, 2015 at 2:04 PM, Cody Koeninger <c...@koeninger.org> wrote: > That looks like the OOM is in the driver, when getting partition metadata > to create the direct stream. In that case, executor memory allocation > doesn't matter. > > Allocate more driver memory, or put a profiler on it to see what's taking > up heap. > > > > On Thu, Sep 24, 2015 at 3:51 PM, Sourabh Chandak <sourabh3...@gmail.com> > wrote: > >> Adding Cody and Sriharsha >> >> On Thu, Sep 24, 2015 at 1:25 PM, Sourabh Chandak <sourabh3...@gmail.com> >> wrote: >> >>> Hi, >>> >>> I have ported receiver less spark streaming for kafka to Spark 1.2 and >>> am trying to run a spark streaming job to consume data form my broker, but >>> I am getting the following error: >>> >>> 15/09/24 20:17:45 ERROR BoundedByteBufferReceive: OOME with size >>> 352518400 >>> java.lang.OutOfMemoryError: Java heap space >>> at java.nio.HeapByteBuffer.<init>(HeapByteBuffer.java:57) >>> at java.nio.ByteBuffer.allocate(ByteBuffer.java:335) >>> at >>> kafka.network.BoundedByteBufferReceive.byteBufferAllocate(BoundedByteBufferReceive.scala:80) >>> at >>> kafka.network.BoundedByteBufferReceive.readFrom(BoundedByteBufferReceive.scala:63) >>> at >>> kafka.network.Receive$class.readCompletely(Transmission.scala:56) >>> at >>> kafka.network.BoundedByteBufferReceive.readCompletely(BoundedByteBufferReceive.scala:29) >>> at >>> kafka.network.BlockingChannel.receive(BlockingChannel.scala:111) >>> at >>> kafka.consumer.SimpleConsumer.liftedTree1$1(SimpleConsumer.scala:83) >>> at >>> kafka.consumer.SimpleConsumer.kafka$consumer$SimpleConsumer$$sendRequest(SimpleConsumer.scala:80) >>> at kafka.consumer.SimpleConsumer.send(SimpleConsumer.scala:103) >>> at >>> org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$getPartitionMetadata$1.apply(KafkaCluster.scala:126) >>> at >>> org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$getPartitionMetadata$1.apply(KafkaCluster.scala:125) >>> at >>> org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$org$apache$spark$streaming$kafka$KafkaCluster$$withBrokers$1.apply(KafkaCluster.scala:346) >>> at >>> org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$org$apache$spark$streaming$kafka$KafkaCluster$$withBrokers$1.apply(KafkaCluster.scala:342) >>> at >>> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) >>> at >>> scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34) >>> at org.apache.spark.streaming.kafka.KafkaCluster.org >>> $apache$spark$streaming$kafka$KafkaCluster$$withBrokers(KafkaCluster.scala:342) >>> at >>> org.apache.spark.streaming.kafka.KafkaCluster.getPartitionMetadata(KafkaCluster.scala:125) >>> at >>> org.apache.spark.streaming.kafka.KafkaCluster.getPartitions(KafkaCluster.scala:112) >>> at >>> org.apache.spark.streaming.kafka.KafkaUtils$.createDirectStream(KafkaUtils.scala:296) >>> at >>> org.ofe.weve.test.KafkaTest$.setupProcessingContext(KafkaTest.scala:35) >>> at org.ofe.weve.test.KafkaTest$.main(KafkaTest.scala:58) >>> at org.ofe.weve.test.KafkaTest.main(KafkaTest.scala) >>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) >>> at >>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) >>> at >>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) >>> at java.lang.reflect.Method.invoke(Method.java:497) >>> at >>> org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358) >>> at >>> org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75) >>> at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) >>> >>> >>> >>> I have tried allocating 100G of memory with 1 executor but it is still >>> failing. >>> >>> Spark version: 1.2.2 >>> Kafka version ported: 0.8.2 >>> Kafka server version: trunk version with SSL enabled >>> >>> Can someone please help me debug this. >>> >>> Thanks, >>> Sourabh >>> >> >> >