from pyspark.sql.types import * import pyspark.sql.functions as F import re
re_expr = re.compile('P([0-9]+)') expr_split = F.udf(lambda x: list(map(int, re_expr.findall(x))), ArrayType(IntegerType())) c = sc.parallelize([(i, 'P1&P2&P3&P4&P5') for i in range(10 ** 6)], 1).toDF(['a', 'b']) #sqlContext.sql('drop table ccc') sqlContext.sql('create table ccc(a int, b string)') c.insertInto('ccc', True) c = sqlContext.sql('select * from ccc') c = c.filter(c.a % 100 == 85) c = c.select(c.a, F.explode(expr_split(c.b)).alias('d')) c = c.filter(c.a == 85) c.take(5) I use Spark 1.5 (1.4.1 has this error too) and Hive 1.1 from CDH 5.4.2 as the warehouse. This code yields "org.apache.spark.SparkException: Can only zip RDDs with same number of elements in each partition", but tweaking numbers can result in unexpected EOF, wrong data returned or no error. If I add "stored as parquet" into the create table statement, the code works ok. 15/09/18 17:30:33 INFO scheduler.DAGScheduler: Job 10 failed: take at <stdin>:1, took 1.622074 s Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/burdanov/spark/python/pyspark/sql/dataframe.py", line 303, in take return self.limit(num).collect() File "/home/burdanov/spark/python/pyspark/sql/dataframe.py", line 279, in collect port = self._sc._jvm.PythonRDD.collectAndServe(self._jdf.javaToPython().rdd()) File "/home/burdanov/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line 538, in __call__ File "/home/burdanov/spark/python/pyspark/sql/utils.py", line 36, in deco return f(*a, **kw) File "/home/burdanov/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line 300, in get_return_value py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 12.0 failed 1 times, most recent failure: Lost task 0.0 in stage 12.0 (TID 73, localhost): org.apache.spark.SparkException: Can only zip RDDs with same number of elements in each partition at org.apache.spark.rdd.RDD$$anonfun$zip$1$$anonfun$apply$27$$anon$1.hasNext(RDD.scala:832) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:388) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:350) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.insertAll(BypassMergeSortShuffleWriter.java:99) at org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:88) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1280) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1268) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1267) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1267) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1493) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1455) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1444) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1813) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1826) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1839) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1910) at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:905) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108) at org.apache.spark.rdd.RDD.withScope(RDD.scala:306) at org.apache.spark.rdd.RDD.collect(RDD.scala:904) at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:373) at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379) at py4j.Gateway.invoke(Gateway.java:259) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:207) at java.lang.Thread.run(Thread.java:745) Caused by: org.apache.spark.SparkException: Can only zip RDDs with same number of elements in each partition at org.apache.spark.rdd.RDD$$anonfun$zip$1$$anonfun$apply$27$$anon$1.hasNext(RDD.scala:832) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:388) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:350) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.insertAll(BypassMergeSortShuffleWriter.java:99) at org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:88) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) ... 1 more -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/Python-UDF-and-explode-error-tp24736.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org