can we run hive queries using spark-avro ? In our case its not just reading the avro file. we have view in hive which is based on multiple tables.
On Thu, Aug 27, 2015 at 9:41 AM, Giri P <gpatc...@gmail.com> wrote: > we are using hive1.1 . > > I was able to fix below error when I used right version spark > > 15/08/26 17:51:12 WARN avro.AvroSerdeUtils: Encountered AvroSerdeException > determining schema. Returning signal schema to indicate problem > org.apache.hadoop.hive.serde2.avro.AvroSerdeException: Neither > avro.schema.literal nor avro.schema.url specified, can't determine table > schema > at > org.apache.hadoop.hive.serde2.avro.AvroSerdeUtils. > determineSchemaOrThrowException(AvroSerdeUtils.java:68) > at > org.apache.hadoop.hive.serde2.avro.AvroSerdeUtils. > determineSchemaOrReturnErrorSchema(AvroSerdeUtils.java:93) > at > org.apache.hadoop.hive.serde2.avro.AvroSerDe.initialize(AvroSerDe.java:60) > at > org.apache.hadoop.hive.metastore.MetaStoreUtils.getDeserializer( > MetaStoreUtils.java:375) > at > org.apache.hadoop.hive.ql.metadata.Partition.getDeserializer(Partition. > java:249) > > > > But I still see this error when querying on some hive avro tables. > > 15/08/26 17:51:27 WARN scheduler.TaskSetManager: Lost task 30.0 in stage > 0.0 (TID 14, dtord01hdw0227p.dc.dotomi.net): > org.apache.hadoop.hive.serde2.avro.BadSchemaException > > at > org.apache.hadoop.hive.serde2.avro.AvroSerDe.deserialize(AvroSerDe.java:91) > > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$1.apply(TableReader.scala:321) > > at > org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$1.apply(TableReader.scala:320) > > I haven't tried spark-avro. We are using Sqlcontext to run queries in our > application > > Any idea if this issue might be coz of querying across different schema > version of data ? > > Thanks > Giri > > On Thu, Aug 27, 2015 at 5:39 AM, java8964 <java8...@hotmail.com> wrote: > >> What version of the Hive you are using? And do you compile to the right >> version of Hive when you compiled Spark? >> >> BTY, spark-avro works great for our experience, but still, some non-tech >> people just want to use as a SQL shell in spark, like HIVE-CLI. >> >> Yong >> >> ------------------------------ >> From: mich...@databricks.com >> Date: Wed, 26 Aug 2015 17:48:44 -0700 >> Subject: Re: query avro hive table in spark sql >> To: gpatc...@gmail.com >> CC: user@spark.apache.org >> >> >> I'd suggest looking at >> http://spark-packages.org/package/databricks/spark-avro >> >> On Wed, Aug 26, 2015 at 11:32 AM, gpatcham <gpatc...@gmail.com> wrote: >> >> Hi, >> >> I'm trying to query hive table which is based on avro in spark SQL and >> seeing below errors. >> >> 15/08/26 17:51:12 WARN avro.AvroSerdeUtils: Encountered AvroSerdeException >> determining schema. Returning signal schema to indicate problem >> org.apache.hadoop.hive.serde2.avro.AvroSerdeException: Neither >> avro.schema.literal nor avro.schema.url specified, can't determine table >> schema >> at >> >> org.apache.hadoop.hive.serde2.avro.AvroSerdeUtils.determineSchemaOrThrowException(AvroSerdeUtils.java:68) >> at >> >> org.apache.hadoop.hive.serde2.avro.AvroSerdeUtils.determineSchemaOrReturnErrorSchema(AvroSerdeUtils.java:93) >> at >> org.apache.hadoop.hive.serde2.avro.AvroSerDe.initialize(AvroSerDe.java:60) >> at >> >> org.apache.hadoop.hive.metastore.MetaStoreUtils.getDeserializer(MetaStoreUtils.java:375) >> at >> >> org.apache.hadoop.hive.ql.metadata.Partition.getDeserializer(Partition.java:249) >> >> >> Its not able to determine schema. Hive table is pointing to avro schema >> using url. I'm stuck and couldn't find more info on this. >> >> Any pointers ? >> >> >> >> -- >> View this message in context: >> http://apache-spark-user-list.1001560.n3.nabble.com/query-avro-hive-table-in-spark-sql-tp24462.html >> Sent from the Apache Spark User List mailing list archive at Nabble.com. >> >> --------------------------------------------------------------------- >> To unsubscribe, e-mail: user-unsubscr...@spark.apache.org >> For additional commands, e-mail: user-h...@spark.apache.org >> >> >> >