This message means that java.util.Date is not supported by Spark DataFrame. You'll need to use java.sql.Date, I believe.
On Wed, Aug 5, 2015 at 8:29 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> wrote: > That seem to be working. however i see a new exception > > Code: > def formatStringAsDate(dateStr: String) = new > SimpleDateFormat("yyyy-MM-dd").parse(dateStr) > > > //(2015-07-27,12459,,31242,6,Daily,-999,2099-01-01,2099-01-02,1,0,0.1,0,1,-1,isGeo,,,204,694.0,1.9236856708701322E-4,0.0,-4.48,0.0,0.0,0.0,) > val rowStructText = > sc.textFile("/user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00003.gz") > case class Summary(f1: Date, f2: Long, f3: Long, f4: Integer, f5 : String, > f6: Integer, f7 : Date, f8: Date, f9: Integer, f10: Integer, f11: Float, > f12: Integer, f13: Integer, f14: String) > > val summary = rowStructText.map(s => s.split(",")).map( > s => Summary(formatStringAsDate(s(0)), > s(1).replaceAll("\"", "").toLong, > s(3).replaceAll("\"", "").toLong, > s(4).replaceAll("\"", "").toInt, > s(5).replaceAll("\"", ""), > s(6).replaceAll("\"", "").toInt, > formatStringAsDate(s(7)), > formatStringAsDate(s(8)), > s(9).replaceAll("\"", "").toInt, > s(10).replaceAll("\"", "").toInt, > s(11).replaceAll("\"", "").toFloat, > s(12).replaceAll("\"", "").toInt, > s(13).replaceAll("\"", "").toInt, > s(14).replaceAll("\"", "") > ) > ).toDF() > bank.registerTempTable("summary") > > > //Output > import java.text.SimpleDateFormat import java.util.Calendar import > java.util.Date formatStringAsDate: (dateStr: String)java.util.Date > rowStructText: org.apache.spark.rdd.RDD[String] = > /user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00003.gz > MapPartitionsRDD[105] at textFile at <console>:60 defined class Summary x: > org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[106] at map at > <console>:61 java.lang.UnsupportedOperationException: Schema for type > java.util.Date is not supported at > org.apache.spark.sql.catalyst.ScalaReflection$class.schemaFor(ScalaReflection.scala:188) > at > org.apache.spark.sql.catalyst.ScalaReflection$.schemaFor(ScalaReflection.scala:30) > at > org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$schemaFor$1.apply(ScalaReflection.scala:164) > > > Any suggestions > > On Wed, Aug 5, 2015 at 8:18 PM, Philip Weaver <philip.wea...@gmail.com> > wrote: > >> The parallelize method does not read the contents of a file. It simply >> takes a collection and distributes it to the cluster. In this case, the >> String is a collection 67 characters. >> >> Use sc.textFile instead of sc.parallelize, and it should work as you want. >> >> On Wed, Aug 5, 2015 at 8:12 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> >> wrote: >> >>> I have csv data that is embedded in gzip format on HDFS. >>> >>> *With Pig* >>> >>> a = load >>> '/user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00003.gz' using >>> PigStorage(); >>> >>> b = limit a 10 >>> >>> >>> (2015-07-27,12459,,31243,6,Daily,-999,2099-01-01,2099-01-02,4,0,0.1,0,1,,,,,203,4810370.0,1.4090459061723766,1.017458,-0.03,-0.11,0.05,0.468666,) >>> >>> >>> (2015-07-27,12459,,31241,6,Daily,-999,2099-01-01,2099-01-02,4,0,0.1,0,1,0,isGeo,,,203,7937613.0,1.1624841995932425,1.11562,-0.06,-0.15,0.03,0.233283,) >>> >>> >>> However with Spark >>> >>> val rowStructText = >>> sc.parallelize("/user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00000.gz") >>> >>> val x = rowStructText.map(s => { >>> >>> println(s) >>> >>> s} >>> >>> ) >>> >>> x.count >>> >>> Questions >>> >>> 1) x.count always shows 67 irrespective of the path i change in >>> sc.parallelize >>> >>> 2) It shows x as RDD[Char] instead of String >>> >>> 3) println() never emits the rows. >>> >>> Any suggestions >>> >>> -Deepak >>> >>> >>> >>> -- >>> Deepak >>> >>> >> > > > -- > Deepak > >