I'm running reduceByKey in spark. My program is the simplest example of spark:
val counts = textFile.flatMap(line => line.split(" ")).repartition(20000). .map(word => (word, 1)) .reduceByKey(_ + _, 10000) counts.saveAsTextFile("hdfs://...") but it always run out of memory... I 'm using 50 servers , 35 executors per server, 140GB memory per server. the documents volume is : 8TB documents, 20 billion documents, 1000 billion words in total. and the words after reduce will be about 100 million. I wonder how to set the configuration of spark? I wonder what value should these parameters be? 1. the number of the maps ? 20000 for example? 2. the number of the reduces ? 10000 for example? 3. others parameters? -- View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/run-reduceByKey-on-huge-data-in-spark-tp23546.html Sent from the Apache Spark User List mailing list archive at Nabble.com. --------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org